Nanoscale analysis of frozen honey by atom probe tomography

被引:4
|
作者
Schwarz, Tim M. [1 ]
Ott, Jonas [1 ]
Solodenko, Helena [1 ]
Schmitz, Guido [1 ]
Stender, Patrick [1 ]
机构
[1] Univ Stuttgart, Inst Mat Sci, Chair Mat Phys, Heisenbergstr 3, D-70569 Stuttgart, Germany
关键词
CLUSTER-ION FORMATION; THERMAL-CONDUCTIVITY; FIELD EVAPORATION; CHEMICAL-COMPOSITION; FABRICATION; MICROSCOPY; DESORPTION; INTERFACES;
D O I
10.1038/s41598-022-22717-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional reconstruction of the analysed volume is one of the main goals of atom probe tomography (APT) and can deliver nearly atomic resolution (similar to 0.2 nm spatial resolution) and chemical information with a mass sensitivity down to the ppm range. Extending this technique to frozen biological systems would have an enormous impact on the structural analysis of biomolecules. In previous works, we have shown that it is possible to measure frozen liquids with APT. In this paper, we demonstrate the ability of APT to trace nanoscale precipitation in frozen natural honey. While the mass signals of the common sugar fragments CxHy and CxOyHz overlap with (H2O)(n)H from water, we achieved correct stoichiometric values via different interpretation approaches for the peaks and thus determined the water content reliably. Next, we use honey to investigate the spatial resolution capabilities as a step toward the measurement of biological molecules in solution in 3D with subnanometer resolution. This may take analytical techniques to a new level, since methods of chemical characterization for cryogenic samples, especially biological samples, are still limited.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [31] Atom probe tomography
    Miller, M. K.
    Forbes, R. G.
    MATERIALS CHARACTERIZATION, 2009, 60 (06) : 461 - 469
  • [32] Atom probe tomography
    Gault, Baptiste
    Chiaramonti, Ann
    Cojocaru-Miredin, Oana
    Stender, Patrick
    Dubosq, Renelle
    Freysoldt, Christoph
    Makineni, Surendra Kumar
    Li, Tong
    Moody, Michael
    Cairney, Julie M.
    NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [33] Atom probe tomography
    Nature Reviews Methods Primers, 1
  • [34] Atom Probe Tomography
    Felfer, P.
    Stephenson, L. T.
    Li, T.
    PRAKTISCHE METALLOGRAPHIE-PRACTICAL METALLOGRAPHY, 2018, 55 (08): : 515 - 526
  • [35] Atom Probe Tomography
    Shea, John J.
    IEEE ELECTRICAL INSULATION MAGAZINE, 2017, 33 (04) : 71 - 71
  • [36] Focused ion beam fabrication of solidified ferritin into nanoscale volumes for compositional analysis using atom probe tomography
    Greene, M. E.
    Kelly, T. F.
    Larson, D. J.
    Prosa, T. J.
    JOURNAL OF MICROSCOPY, 2012, 247 (03) : 288 - 299
  • [37] Atom Probe Tomography of a Cu-Doped TiNiSn Thermoelectric Material: Nanoscale Structure and Optimization of Analysis Conditions
    He, Henry
    Halpin, John E.
    Popuri, Srinivas R.
    Daly, Luke
    Bos, Jan-Willem G.
    Moody, Michael P.
    MacLaren, Donald A.
    Bagot, Paul A. J.
    MICROSCOPY AND MICROANALYSIS, 2022, 28 (04) : 1340 - 1347
  • [38] Promoting Standards in Quantitative Atom Probe Tomography Analysis
    Ulfig, R. M.
    Kelly, T. F.
    Gault, B.
    MICROSCOPY AND MICROANALYSIS, 2009, 15 : 260 - 261
  • [39] Atom probe tomography applied to the analysis of irradiated microstructures
    Emmanuelle A. Marquis
    Journal of Materials Research, 2015, 30 : 1222 - 1230
  • [40] Xenotime at the Nanoscale: U-Pb Geochronology and Optimisation of Analyses by Atom Probe Tomography
    Joseph, Cilva
    Fougerouse, Denis
    Saxey, David W.
    Verberne, Rick
    Reddy, Steven M.
    Rickard, William D. A.
    GEOSTANDARDS AND GEOANALYTICAL RESEARCH, 2021, 45 (03) : 443 - 456