Trace formula for chaotic dielectric resonators tested with microwave experiments

被引:12
|
作者
Bittner, S. [1 ]
Dietz, B. [1 ]
Dubertrand, R. [2 ]
Isensee, J. [1 ]
Miski-Oglu, M. [1 ]
Richter, A. [1 ,3 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[3] ECT, I-38123 Villazano, Trento, Italy
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 05期
关键词
STADIUM BILLIARD; PERIODIC-ORBITS; QUANTUM; DYNAMICS; STATISTICS; EIGENFUNCTIONS; QUANTIZATION; SPECTRUM; RAY;
D O I
10.1103/PhysRevE.85.056203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We measured the resonance spectra of two stadium-shaped dielectric microwave resonators and tested a semiclassical trace formula for chaotic dielectric resonators proposed by Bogomolny et al. [Phys. Rev. E 78, 056202 (2008)]. We found good qualitative agreement between the experimental data and the predictions of the trace formula. Deviations could be attributed to missing resonances in the measured spectra in accordance with previous experiments [Phys. Rev. E 81, 066215 (2010)]. The investigation of the numerical length spectrum showed good qualitative and reasonable quantitative agreement with the trace formula. It demonstrated, however, the need for higher-order corrections of the trace formula. The application of a curvature correction to the Fresnel reflection coefficients entering the trace formula yielded better agreement, but deviations remained, indicating the necessity of further investigations.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Can Dielectric Resonators Be Useful for Microwave Heating?
    Chiadini, F.
    Diovisalvi, A.
    Fiumara, V.
    Scaglione, A.
    2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), 2015,
  • [32] Trace formula for dielectric cavities: General properties
    Bogomolny, E.
    Dubertrand, R.
    Schmit, C.
    PHYSICAL REVIEW E, 2008, 78 (05):
  • [33] Trace formula for a dielectric microdisk with a point scatterer
    Hales, Robert F. M.
    Sieber, Martin
    Waalkens, Holger
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
  • [34] Dielectric loss extraction for superconducting microwave resonators
    McRae, C. R. H.
    Lake, R. E.
    Long, J. L.
    Bal, M.
    Wu, X.
    Jugdersuren, B.
    Metcalf, T. H.
    Liu, X.
    Pappas, D. P.
    APPLIED PHYSICS LETTERS, 2020, 116 (19)
  • [35] DIELECTRIC RESONATORS FOR MICROWAVE INTEGRATED-OSCILLATORS
    LUTTEKE, G
    HENNINGS, D
    PHILIPS TECHNICAL REVIEW, 1986, 43 (1-2): : 35 - 46
  • [36] Cantor dielectric resonators for microwave waveguide applicators
    Chiadini, Francesco
    Diovisalvi, Annunziata
    Fiumara, Vincenzo
    Scaglione, Antonio
    RADIO SCIENCE, 2016, 51 (06) : 731 - 741
  • [37] Dielectric resonators for microwave and millimeter wave applications
    Nedelcu, L.
    Toacsan, M. I.
    Banciu, M. G.
    Ioachim, A.
    CAS 2007 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1 AND 2, PROCEEDINGS, 2007, : 275 - 278
  • [38] Experimental test of a trace formula for a chaotic three-dimensional microwave cavity -: art. no. 064101
    Dembowski, C
    Dietz, B
    Gräf, HD
    Heine, A
    Papenbrock, T
    Richter, A
    Richter, C
    PHYSICAL REVIEW LETTERS, 2002, 89 (06)
  • [39] Chaotic Scattering: Exact Results and Microwave Experiments
    Guhr, T.
    ACTA PHYSICA POLONICA A, 2015, 128 (06) : 963 - 967
  • [40] Experiments on Direct Chaotic Communications in microwave band
    Dmitriev, AS
    Kyarginsky, BY
    Panas, AI
    Starkov, SO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (06): : 1495 - 1507