On the Sparse Gradient Denoising Optimization of Neural Network Models for Rolling Bearing Fault Diagnosis Illustrated by a Ship Propulsion System

被引:5
|
作者
Wang, Shuangzhong [1 ]
Zhang, Ying [2 ]
Zhang, Bin [2 ]
Fei, Yuejun [3 ]
He, Yong [3 ]
Li, Peng [4 ]
Xu, Mingqiang [5 ]
机构
[1] Shanghai Maritime Univ, Logist Engn Coll, Shanghai 201306, Peoples R China
[2] Shanghai Maritime Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
[3] SOA, East China Sea Ctr Stand & Metrol Technol, Shanghai 201306, Peoples R China
[4] SOA, East China Sea Forecasting Ctr, Shanghai 200136, Peoples R China
[5] CTTIC Big Data Shanghai Technol Co Ltd, Shanghai 201901, Peoples R China
基金
中国国家自然科学基金;
关键词
neural networks; sparse denoising; gradient optimization; rolling bearings fault diagnosis; ALGORITHM;
D O I
10.3390/jmse10101376
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The drive rolling bearing is an important part of a ship's system; the detection of the drive rolling bearing is an important component in ship-fault diagnosis, and machine learning methods are now widely used in the fault diagnosis of rolling bearings. However, training methods based on small batches have a disadvantage in that the samples which best represent the gradient descent direction can be disturbed by either other samples in the opposite direction or anomalies. Aiming at this problem, a sparse denoising gradient descent (SDGD) optimization algorithm, based on the impact values of network nodes, was proposed to improve the updating method of the batch gradient. First, the network is made sparse by using the node weight method based on the mean impact value. Second, the batch gradients are clustered via a distribution-density-based clustering method. Finally, the network parameters are updated using the gradient values after clustering. The experimental results show the efficiency and feasibility of the proposed method. The SDGD model can achieve up to a 2.35% improvement in diagnostic accuracy compared to the traditional network diagnosis model. The training convergence speed of the SDGD model improves by 2.16%, up to 17.68%. The SDGD model can effectively solve the problem of falling into the local optimum point while training a network.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis
    Wu, Zhenghong
    Jiang, Hongkai
    Liu, Shaowei
    Wang, Ruixin
    ISA TRANSACTIONS, 2022, 129 : 505 - 524
  • [42] Rolling Bearing Composite Fault Diagnosis Method Based on Convolutional Neural Network
    Chen, Song
    Guo, Dong-ting
    Chen, Li-ai
    Wang, Da-gui
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (03)
  • [43] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Zhang, Xiaochen
    Li, Hanwen
    Meng, Weiying
    Liu, Yaofeng
    Zhou, Peng
    He, Cai
    Zhao, Qingbo
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (10)
  • [44] Multiscale convolutional neural network and decision fusion for rolling bearing fault diagnosis
    Lv, Defeng
    Wang, Huawei
    Che, Changchang
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2021, 73 (03) : 516 - 522
  • [45] Research on fault diagnosis of rolling bearing based on lightweight convolutional neural network
    Xiaochen Zhang
    Hanwen Li
    Weiying Meng
    Yaofeng Liu
    Peng Zhou
    Cai He
    Qingbo Zhao
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [46] Deep Reconstruction Transfer Convolutional Neural Network for Rolling Bearing Fault Diagnosis
    Feng, Ziwei
    Tong, Qingbin
    Jiang, Xuedong
    Lu, Feiyu
    Du, Xin
    Xu, Jianjun
    Huo, Jingyi
    SENSORS, 2024, 24 (07)
  • [47] Intelligent fault diagnosis for rolling bearing based on improved convolutional neural network
    Gong W.-F.
    Chen H.
    Zhang Z.-H.
    Zhang M.-L.
    Guan C.
    Wang X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2020, 33 (02): : 400 - 413
  • [48] A Multiscale Graph Convolutional Neural Network Framework for Fault Diagnosis of Rolling Bearing
    Yin, Peizhe
    Nie, Jie
    Liang, Xinyue
    Yu, Shusong
    Wang, Chenglong
    Nie, Weizhi
    Ding, Xiangqian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [49] A rolling bearing fault diagnosis method using novel lightweight neural network
    He, Deqiang
    Liu, Chenyu
    Chen, Yanjun
    Jin, Zhenzhen
    Li, Xianwang
    Shan, Sheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (12)
  • [50] Rolling bearing fault diagnosis based on wavelet packet and RBF neural network
    Sun Fang
    Wei Zijie
    Proceedings of the 26th Chinese Control Conference, Vol 5, 2007, : 451 - 455