Theoretical optimization of defect density and band offsets for CsPbI2Br based perovskite solar cells

被引:6
|
作者
Tara, Ayush [1 ]
Bharti, Vishal [2 ]
Sharma, Susheel [1 ]
Gupta, Rockey [1 ]
机构
[1] Univ Jammu, Dept Elect, Jammu, Jammu & Kashmir, India
[2] Cluster Univ Jammu, Sch Sci, Dept Phys, Jammu, Jammu & Kashmir, India
来源
关键词
CsPbI2Br; Hole transport layer; Defect density and Band offsets; ALPHA-CSPBI3; PEROVSKITE; PERFORMANCE; LAYERS;
D O I
10.1016/j.mtcomm.2022.104546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The stability of Methyl-Ammonium (MA) and Formamidinium (FA) based perovskite solar cells (PSCs) has al-ways been a matter of concern because of volatile nature of organic cations present in them. So, it becomes necessary to replace organic cations with inorganic non-volatile cations. Recently, lot of efforts have been put in to a new class of PSCs, CsPbX3 (where, X = Br, I, Cl etc.) wherein organic cation is replaced by Caesium, to address the stability issue. Despite being more stable than their organic counterparts, the PCE of CsPbI2Br based PSCs is still low as compared to that offered by Methyl-Ammonium (MA) and Formamidinium (FA) based PSCs. In this paper, we have proposed a new CsPbI2Br based PSC structure having n-i-p architecture: FTO/Zn(O0.3, S0.7)/CsPbI2Br/HTL/Au. The proposed structure has been simulated using SCAPS software by employing new ETL Zn(O0.3, S0.7) and various HTLs (spiro-OMeTAD, CuSCN, CuI and MoO3). Initial simulations reveal that the proposed PSC achieves best PCE of 20.36 %, when CuI is used as HTL. The impact of defect density (Nt) in CsPbI2Br layer has been studied for various HTLs and optimum value of Nt obtained as 1.0 x 1011 cm-3. Defect densities at ETL/CsPbI2Br and CsPbI2Br/HTL interfaces have also been optimised at values of 1.0 x 1015 cm-3 and 1.0 x 1015 cm-3 respectively. Finally, VBO and CBO at respective interfaces have also been optimized and the final proposed structure having Zn(O0.3, S0.7) as ETL and CuI as HTL resulted in the PCE of 21.51 % with VOC of 1.55 V, JSC of 15.21 mAcm- 2 and FF of 90.77 %, which are comparable to the Shockley-Queisser limit for CsPbI2Br perovskite solar cells, thereby, considerably enhancing the efficiency of inorganic perovskite solar cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Interface Defects Dependent on Perovskite Annealing Temperature for NiOX-Based Inverted CsPbI2Br Perovskite Solar Cells
    Huang, Zhaoxuan
    Tian, Nan
    Duan, Shiyu
    Zhang, Jicheng
    Yao, Disheng
    Zheng, Guoyuan
    Yang, Yanhan
    Zhou, Bing
    CHEMSUSCHEM, 2024, 17 (16)
  • [32] Low-Temperature Preparation of CsPbI2Br for Efficient and Stable Perovskite Solar Cells
    Yu, Luting
    Zhang, Jing
    Yuan, Haobo
    Sun, Hongrui
    Gan, Xinlei
    Hu, Ziyang
    Zhu, Yuejin
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) : 1076 - 1081
  • [33] Efficient carbon-based CsPbI2Br perovskite solar cells using bifunctional polymer modification
    Wang, Lulu
    Fan, Bingbing
    Wei, Donghui
    Yang, Zhibin
    Zheng, Bing
    Yin, Penggang
    Huo, Lijun
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (15) : 3867 - 3875
  • [34] Crystallization management and defect passivation via additive engineering for efficient and stable carbon-based CsPbI2Br perovskite solar cells
    Zhang, Yaping
    Wang, Yanan
    Chen, Jing
    Peng, Lin
    Liu, Xiaolin
    Lin, Jia
    JOURNAL OF POWER SOURCES, 2024, 609
  • [35] Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77%
    Zhang, Hua
    Zhuang, Jia
    Liu, Xingchong
    Ma, Zhu
    Guo, Heng
    Zheng, Ronghong
    Zhao, Shuangshuang
    Zhang, Fu
    Xiao, Zheng
    Wang, Hanyu
    Li, Haimin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 82 : 40 - 46
  • [36] The CsPbI2Br Perovskite Solar Cell with High Open-Circuit Voltage by Crystallization Optimization
    Liu, Shanjing
    Xu, Xinyu
    Xing, Chuwu
    Ge, Guanming
    Wang, Duofa
    Zhang, Tianjin
    ENERGY TECHNOLOGY, 2022, 10 (08)
  • [37] Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77%
    Hua Zhang
    Jia Zhuang
    Xingchong Liu
    Zhu Ma
    Heng Guo
    Ronghong Zheng
    Shuangshuang Zhao
    Fu Zhang
    Zheng Xiao
    Hanyu Wang
    Haimin Li
    Journal of Materials Science & Technology, 2021, 82 (23) : 40 - 46
  • [38] In Situ Grain Boundary Functionalization for Stable and Efficient Inorganic CsPbI2Br Perovskite Solar Cells
    Zeng, Zhaobing
    Zhang, Jing
    Gan, Xinlei
    Sun, Hongrui
    Shang, Minghui
    Hou, Dagang
    Lu, Chaojie
    Chen, Renjie
    Zhu, Yuejin
    Han, Liyuan
    ADVANCED ENERGY MATERIALS, 2018, 8 (25)
  • [39] Organic Ligands Armored ZnO Enhances Efficiency and Stability of CsPbI2Br Perovskite Solar Cells
    Wang, Pang
    Wang, Hui
    Mao, Yuchao
    Zhang, Huijun
    Ye, Fanghao
    Liu, Dan
    Wang, Tao
    ADVANCED SCIENCE, 2020, 7 (21)
  • [40] Improved interface performance of all inorganic carbon based CsPbI2Br perovskite solar cells using CuxO
    Sun B.
    Zheng S.
    Chi W.
    Chen K.
    Zhang X.
    Xu K.
    Chen H.
    Xie Y.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (05): : 2818 - 2826