Identification of linear parameter-varying systems using nonlinear programming

被引:112
|
作者
Lee, LH
Poolla, K
机构
[1] Lockheed Martin Missiles & Space Co, Sunnyvale, CA 94089 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1115/1.2802444
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the identification of a linear parameter-varying (LPV) system whose parameter dependence can be written as a linear/fractional transformation (LFT). We formulate an output-error identification problem and present a parameter estimation scheme in which a prediction error-based cost function is minimized using nonlinear programming; its gradients and (approximate) Hessians can be completed using LPV fillers and inner products, and identifiable model sets (i.e., local canonical forms) are obtained efficiently using a natural geometrical approach. Some computational issues and experiences are discussed, and a simple numerical example is provided for illustration.
引用
收藏
页码:71 / 78
页数:8
相关论文
共 50 条
  • [31] Control of Linear Parameter-Varying Systems using B-Splines
    Hilhorst, Gijs
    Lambrechts, Erik
    Pipeleers, Goele
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3246 - 3251
  • [32] Active Learning for Linear Parameter-Varying System Identification
    Chin, Robert
    Maass, Alejandro, I
    Ulapane, Nalika
    Manzie, Chris
    Shames, Iman
    Nesic, Dragan
    Rowe, Jonathan E.
    Nakada, Hayato
    IFAC PAPERSONLINE, 2020, 53 (02): : 989 - 994
  • [33] Identification of hybrid and linear parameter-varying models via piecewise affine regression using mixed integer programming
    Mejari, Manas
    Naik, Vihangkumar V.
    Piga, Dario
    Bemporad, Alberto
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (15) : 5802 - 5819
  • [34] Experimental validation of a regularized nonlinear least-squares-based identification approach for linear parameter-varying systems
    Turk, D.
    Gillis, J.
    Pipeleers, G.
    Swevers, J.
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2797 - 2807
  • [35] Robust L1 Model Reduction for Linear Parameter-Varying Systems with Parameter-Varying Delays
    Liang, Yan
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND AUTOMATION ENGINEERING (ECAE 2017), 2017, 140 : 148 - 152
  • [36] Distributed Control of Linear Parameter-Varying Decomposable Systems
    Hoffmann, C.
    Eichler, A.
    Werner, H.
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 2380 - 2385
  • [37] H∞ mixed stabilization of nonlinear parameter-varying systems
    Fu, Rong
    Zeng, Jianping
    Duan, Zhisheng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (17) : 5232 - 5246
  • [38] Stability radius of linear parameter-varying systems and applications
    Ngoc, Pham Huu Anh
    Naito, Toshiki
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 5736 - 5741
  • [39] Frequency Response Functions of Linear Parameter-Varying Systems
    Schoukens, Maarten
    Toth, Roland
    IFAC PAPERSONLINE, 2019, 52 (28): : 32 - 37
  • [40] Stability radius of linear parameter-varying systems and applications
    Ngoc, Pham Huu Anh
    Naito, Toshiki
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) : 170 - 191