Particle diffusion on vortices in nearly incompressible magnetohydrodynamics

被引:6
|
作者
Verkhoglyadova, OP [1 ]
le Roux, JA
机构
[1] Univ Calif Riverside, Inst Geophys & Planetary Phys, Riverside, CA 92521 USA
[2] Natl Taras Shevchenko Univ Kiev, Dept Space Phys & Astron, Kiev, Ukraine
来源
ASTROPHYSICAL JOURNAL | 2004年 / 602卷 / 02期
关键词
MHD; plasmas; turbulence; waves;
D O I
10.1086/381172
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Standard theory of energetic particle transport in magnetic irregularities treats the latter as weak random fluctuations described as linear MHD wave modes and does not include nonlinear coherent structures such as vortices. To address this shortcoming, a study of energetic particle diffusion in the heliosphere, taking into account scattering on vortices, is made. We consider vortices as nonlinear coherent planar two-dimensional structures orthogonal to the background magnetic field. They can be derived in the framework of nearly incompressible two-dimensional MHD for a subsonic plasma in the fluid frame with plasma beta betaless than or equal to1 and correspond to "zero-frequency'' modes in the linear regime. Transport coefficients for energetic particles are evaluated using the Hamiltonian formalism and variational principles. Further applications for study of cosmic-ray transport in the heliosphere are discussed.
引用
收藏
页码:1002 / 1005
页数:4
相关论文
共 50 条
  • [41] THE STRUCTURE OF IDEAL MAGNETOHYDRODYNAMICS WITH INCOMPRESSIBLE STEADY FLOW
    GEBHARDT, U
    KIESSLING, M
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07): : 1689 - 1701
  • [42] Energy Transfer in Incompressible Magnetohydrodynamics: The Filtered Approach
    Coburn, Jesse T.
    Sorriso-Valvo, Luca
    FLUIDS, 2019, 4 (03)
  • [43] Oscillating solutions of incompressible magnetohydrodynamics and dynamo effect
    Gérard-Varet, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) : 815 - 840
  • [44] ANALYSIS OF A LINEARIZED POROMECHANICS MODEL FOR INCOMPRESSIBLE AND NEARLY INCOMPRESSIBLE MATERIALS
    Barre, Mathieu
    Grandmont, Celine
    Moireau, Philippe
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, : 846 - 906
  • [46] THE SLOWNESS SURFACES OF INCOMPRESSIBLE AND NEARLY INCOMPRESSIBLE ELASTIC-MATERIALS
    SCOTT, NH
    JOURNAL OF ELASTICITY, 1986, 16 (03) : 239 - 250
  • [47] REGULARIZATION OF PLANAR VORTICES FOR THE INCOMPRESSIBLE FLOW
    Cao, Daomin
    Peng, Shuangjie
    Yan, Shusen
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (05) : 1443 - 1467
  • [48] REGULARIZATION OF PLANAR VORTICES FOR THE INCOMPRESSIBLE FLOW
    曹道珉
    彭双阶
    严树森
    Acta Mathematica Scientia, 2018, 38 (05) : 1443 - 1467
  • [49] REGULARIZATION OF PLANAR VORTICES FOR THE INCOMPRESSIBLE FLOW
    曹道珉
    彭双阶
    严树森
    Acta Mathematica Scientia(English Series), 2018, 38 (05) : 1443 - 1467
  • [50] CONE MODELS FOR NEARLY INCOMPRESSIBLE SOIL
    MEEK, JW
    WOLF, JP
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1993, 22 (08): : 649 - 663