Online Discovery of Congregate Groups on Sparse Spatio-temporal Data

被引:0
|
作者
Chen, Tianran [1 ,2 ]
Zhang, Yongzheng [1 ,2 ]
Tuo, Yupeng [1 ]
Wang, Weiguang [1 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
GATHERING PATTERNS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The pervasiveness of location-acquisition technologies leads to large amounts of spatio-temporal data, which brings us opportunities and challenges to discover interesting group patterns from these individual's trajectories. In this work, firstly, we propose a novel group pattern called congregate group, which captures various congregations by exploiting trajectory streams. Then, we design a discovery framework which contains three main stages including trajectory preprocessing, crowds generation and congregate groups discovery to detect congregations. Meanwhile, an interpolation method is proposed to handle missing points on sparse data. Besides, a set of optimization techniques is applied to reduce computational costs. Finally, our extensive experiments based on real cellular network dataset and real taxicab trajectory dataset demonstrate the effectiveness, efficiency and scalability of our proposed approach.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [2] A Spatio-Temporal Approach to the Discovery of Online Social Trends
    Achrekar, Harshavardhan
    Fang, Zheng
    Li, You
    Chen, Cindy
    Liu, Benyuan
    Wang, Jie
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 510 - 524
  • [3] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [4] Causal Structure Discovery for Spatio-temporal Data
    Chu, Victor W.
    Wong, Raymond K.
    Liu, Wei
    Chen, Fang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, PT I, 2014, 8421 : 236 - 250
  • [5] Spatio-temporal abnormal cluster discovery in arrival data
    Liu, Jun-Ling
    Wei, Ru-Yu
    Yu, Ge
    Sun, Huan-Liang
    Yao, Cheng-Wei
    Liu, Jun-Ling (liujl@sjzu.edu.cn), 1600, Chinese Academy of Sciences (25): : 225 - 235
  • [6] CONSIDERING GROUPS IN THE STATISTICAL MODELING OF SPATIO-TEMPORAL DATA
    Cocchi, D.
    Bruno, F.
    STATISTICA, 2010, 70 (04) : 511 - 527
  • [7] Predictive spatio-temporal models for spatially sparse environmental data
    de Luna, X
    Genton, MG
    STATISTICA SINICA, 2005, 15 (02) : 547 - 568
  • [8] Discovery of Patterns in Spatio-Temporal Data Using Clustering Techniques
    Aryal, Amar Mani
    Wang, Sujing
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 990 - 995
  • [9] Automatic Discovery of Tactics in Spatio-Temporal Soccer Match Data
    Decroos, Tom
    Van Haaren, Jan
    Davis, Jesse
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 223 - 232
  • [10] A Big Data Platform For Spatio-Temporal Social Event Discovery
    Khan, Aamir Shoeb Alam
    Afyouni, Imad
    Al Aghbari, Zaher
    2020 21ST IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2020), 2020, : 248 - 249