Fast Bit-Parallel Shifted Polynomial Basis Multiplier Using Weakly Dual Basis Over GF(2m)

被引:6
|
作者
Park, Sun-Mi [1 ]
Chang, Ku-Young [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[2] Elect & Telecommuni Res Inst, Cryptog Res Team, Taejon, South Korea
基金
新加坡国家研究基金会;
关键词
Bit-parallel multiplier; finite field arithmetic; pentanomial; shifted polynomial basis; weakly dual basis (WDB); IRREDUCIBLE PENTANOMIALS;
D O I
10.1109/TVLSI.2010.2075946
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present a new method to compute the Mastrovito matrix for GF(2(m)) generated by an arbitrary irreducible polynomial using weakly dual basis of shifted polynomial basis. In particular, we derive the explicit formulas of the proposed multiplier for special type of irreducible pentanomial x(m) + x(k3) + x(k2) +x(k1) + 1 with k(1) < k(2) <= (k(1) +k(3))/2 < k(3) < min(2k(1) , m/2). As a result, the time complexity of the proposed multiplier matches or outperforms the previously known results. On the other hand, the number of XOR gates of the proposed multiplier is slightly greater than the best known results.
引用
收藏
页码:2317 / 2321
页数:5
相关论文
共 50 条
  • [41] Error Detecting Dual Basis Bit Parallel Systolic Multiplication Architecture over GF(2m)
    Singh, A. K.
    Bera, Asish
    Rahaman, H.
    Mathew, J.
    Pradhan, D. K.
    [J]. IEEE CIRCUITS AND SYSTEMS INTERNATIONAL CONFERENCE ON TESTING AND DIAGNOSIS, 2009, : 451 - 454
  • [42] New Bit-Parallel Systolic Architectures for Computing Multiplication, Multiplicative Inversion and Division in GF(2m) Under Polynomial Basis and Normal Basis Representations
    Lee, Chiou-Yng
    Chiou, Che Wun
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2008, 52 (03): : 313 - 324
  • [43] New Bit-Parallel Systolic Architectures for Computing Multiplication, Multiplicative Inversion and Division in GF(2m) Under Polynomial Basis and Normal Basis Representations
    Chiou-Yng Lee
    Che Wun Chiou
    [J]. Journal of Signal Processing Systems, 2008, 52 (3) : 313 - 324
  • [44] Novel bit-parallel multiplier for GF(2m) defined by all-one polynomial using generalized Karatsuba algorithm
    Xie, Xiao-ning
    Chen, Gong-liang
    Li, Yin
    [J]. INFORMATION PROCESSING LETTERS, 2014, 114 (03) : 140 - 146
  • [45] Concurrent error detection and correction in dual basis multiplier over GF(2m)
    Chiou, C. W.
    Lee, C. -Y.
    Lin, J. -M.
    Hou, T. -W.
    Chang, C. -C.
    [J]. IET CIRCUITS DEVICES & SYSTEMS, 2009, 3 (01) : 22 - 40
  • [46] Efficient Bit-Parallel GF(2m) Multiplier for a Large Class of Irreducible Pentanomials
    Cilardo, Alessandro
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2009, 58 (07) : 1001 - 1008
  • [47] Bit-parallel polynomial basis multiplier for new classes of finite fields
    Wu, Huapeng
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2008, 57 (08) : 1023 - 1031
  • [48] New efficient bit-parallel polynomial basis multiplier for special pentanomials
    Park, Sun-Mi
    Chang, Ku-Young
    Hong, Dowon
    Seo, Changho
    [J]. INTEGRATION-THE VLSI JOURNAL, 2014, 47 (01) : 130 - 139
  • [49] Low Cost Dual-Basis Multiplier over GF(2m) Using Multiplexer Approach
    Chang, Hung Wei
    Liang, Wen-Yew
    Chiou, Che Wun
    [J]. KNOWLEDGE DISCOVERY AND DATA MINING, 2012, 135 : 185 - +
  • [50] Parallel Algorithm for Polynomial Basis Multiplier in GF(2(m)) Fields
    Chiou, Che-Wun
    Jeng, Huey-Lin
    [J]. JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2008, 11 (02): : 211 - 218