A Quantum Monte Carlo Study of the Reactions of CH with Acrolein

被引:32
|
作者
Pakhira, Srimanta [1 ,3 ]
Lengeling, Benjamin S. [1 ,3 ,5 ]
Olatunji-Ojo, Olayinka [4 ]
Caffarel, Michel [5 ]
Frenklach, Michael [2 ,6 ]
Lester, William A., Jr. [1 ,3 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, CSD, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Kenneth S Pitzer Ctr Theoret Chem, Dept Chem, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA
[5] Univ Toulouse, CNRS, IRSAMC, Lab Chim & Phys Quant, F-31062 Toulouse, France
[6] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2015年 / 119卷 / 18期
关键词
SET MODEL CHEMISTRY; WAVE-FUNCTIONS; SPIN CONTAMINATION; TRANSITION-STATES; GAUSSIAN-1; THEORY; PRODUCT DETECTION; DENSITY; ENERGIES; THERMOCHEMISTRY; SPECTRA;
D O I
10.1021/acs.jpca.5b00919
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To assist understanding of combustion processes, we have investigated reactions of methylidyne (CH) with acrolein (CH2CHCHO) using the quantum Monte Carlo (QMC) and other computational methods. We present a theoretical study of the major reactions reported in a recent experiment on the subject system. Both DFT and MP2 computations are carried out, and the former approach is used to form the independent-particle part of the QMC trial wave function used in the diffusion Monte Carlo (DMC) variant of the QMC method. In agreement with experiment, we find that the dominant product channel leads to formation of C4H4O systems + H with leading products of furan + H and 1,3-butadienal + H. Equilibrium geometries, atomization energies, reaction barriers, transition states, and heats of reaction are computed using the DFT, MP2, and DMC approaches and compared to experiment. We find that DMC results are in close agreement with experiment. The kinetics of the subject reactions are determined by solving master equations with the MultiWell software suite.
引用
收藏
页码:4214 / 4223
页数:10
相关论文
共 50 条
  • [21] Quantum Monte Carlo study of strongly correlated electrons
    Xu Xiao-Yan
    ACTA PHYSICA SINICA, 2022, 71 (12)
  • [22] Quantum Monte Carlo study of inhomogeneous neutron matter
    Gandolfi, Stefano
    HITES 2012: HORIZONS OF INNOVATIVE THEORIES, EXPERIMENTS, AND SUPERCOMPUTING IN NUCLEAR PHYSICS, 2012, 403
  • [23] Diffusion Monte Carlo study of circular quantum dots
    Pederiva, F
    Umrigar, CJ
    Lipparini, E
    PHYSICAL REVIEW B, 2000, 62 (12): : 8120 - 8125
  • [24] Quantum Monte Carlo study of an anharmonic Holstein model
    Paleari, G.
    Hebert, F.
    Cohen-Stead, B.
    Barros, K.
    Scalettar, R. T.
    Batrouni, G. G.
    PHYSICAL REVIEW B, 2021, 103 (19)
  • [25] Quantum Monte Carlo study of electrons in low dimensions
    Malatesta, A
    Senatore, G
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P5): : 341 - 346
  • [26] Quantum Monte Carlo Study of a Positron in an Electron Gas
    Drummond, N. D.
    Rios, P. Lopez
    Needs, R. J.
    Pickard, C. J.
    PHYSICAL REVIEW LETTERS, 2011, 107 (20)
  • [27] Quantum Monte Carlo Study of Positron Lifetimes in Solids
    Simula, K. A.
    Muff, J. E.
    Makkonen, I.
    Drummond, N. D.
    PHYSICAL REVIEW LETTERS, 2022, 129 (16)
  • [28] Diagrammatic quantum Monte Carlo study of the Frohlich polaron
    Mishchenko, AS
    Prokof'ev, NV
    Sakamoto, A
    Svistunov, BV
    PHYSICAL REVIEW B, 2000, 62 (10): : 6317 - 6336
  • [29] Quantum Monte Carlo study of vibrational states of silanone
    Acioli, PH
    Costa, LS
    Prudente, FV
    CHEMICAL PHYSICS LETTERS, 2000, 321 (1-2) : 121 - 125
  • [30] Diffusion quantum Monte Carlo study of argon dimer
    Silvestrelli, Pier Luigi
    Ambrosetti, Alberto
    ELECTRONIC STRUCTURE, 2021, 3 (02):