Atmospheric-pressure ionization and fragmentation of peptides by solution-cathode glow discharge

被引:27
|
作者
Schwartz, Andrew J. [1 ]
Shelley, Jacob T. [2 ,3 ]
Walton, Courtney L. [2 ]
Williams, Kelsey L. [2 ]
Hieftje, Gary M. [1 ]
机构
[1] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
[2] Kent State Univ, Dept Chem & Biochem, Kent, OH 44242 USA
[3] Rensselaer Polytech Inst, Dept Chem & Chem Biol, Troy, NY 12180 USA
关键词
ELECTRON-CAPTURE DISSOCIATION; MULTIPLY-CHARGED IONS; MASS-SPECTROMETRY; LIQUID-CHROMATOGRAPHY; ELEMENTAL ANALYSIS; EMISSION; RADICALS; LEUCINE; PHOTOIONIZATION; INFORMATION;
D O I
10.1039/c6sc02032a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Modern "-omics" (e.g., proteomics, glycomics, metabolomics, etc.) analyses rely heavily on electrospray ionization and tandem mass spectrometry to determine the structural identity of target species. Unfortunately, these methods are limited to specialized mass spectrometry instrumentation. Here, a novel approach is described that enables ionization and controlled, tunable fragmentation of peptides at atmospheric pressure. In the new source, a direct-current plasma is sustained between a tapered metal rod and a flowing sample-containing solution. As the liquid stream contacts the electrical discharge, peptides from the solution are volatilized, ionized, and fragmented. At high discharge currents (e.g., 70 mA), electrospray-like spectra are observed, dominated by singly and doubly protonated molecular ions. At lower currents (35 mA), many peptides exhibit extensive fragmentation, with a-, b-, c-, x-, and y-type ion series present as well as complex fragments, such as d-type ions, not previously observed with atmospheric-pressure dissociation. Though the mechanism of fragmentation is currently unclear, observations indicate it could result from the interaction of peptides with gas-phase radicals or ultraviolet radiation generated within the plasma.
引用
收藏
页码:6440 / 6449
页数:10
相关论文
共 50 条
  • [31] Solution-cathode glow discharge - optical emission spectrometry of a new design and using a compact spectrograph
    Doroski, Todd A.
    King, Allison M.
    Fritz, Michael P.
    Webb, Michael R.
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2013, 28 (07) : 1090 - 1095
  • [32] Elemental Analysis of Mineral Water by Solution-Cathode Glow Discharge-Atomic Emission Spectrometry
    Zheng, Peichao
    Gong, Yaming
    Wang, Jinmei
    Zeng, Xiaobo
    ANALYTICAL LETTERS, 2017, 50 (09) : 1512 - 1520
  • [33] Evaluation of interference filters for spectral discrimination in solution-cathode glow discharge optical emission spectrometry
    Schwartz, Andrew J.
    Ray, Steven J.
    Hieftje, Gary M.
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2016, 31 (06) : 1278 - 1286
  • [35] Evaluation of solution-cathode glow discharge atomic emission spectrometry for the analysis of nanoparticle containing solutions
    Hazel, Nicholas
    Orejas, Jaime
    Ray, Steven J.
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2021, 176 (176)
  • [36] Pressure dependence of the atmospheric electrolyte cathode glow discharge spectrum
    Hungarian Acad of Sciences, Budapest, Hungary
    J Anal At Spectrom, 10 (1203-1208):
  • [37] Pressure dependence of the atmospheric electrolyte cathode glow discharge spectrum
    Mezei, P
    Cserfalvi, T
    Janossy, M
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 1997, 12 (10) : 1203 - 1208
  • [38] Cathode fall characteristics in a dc atmospheric pressure glow discharge
    Shi, JJ
    Kong, MG
    JOURNAL OF APPLIED PHYSICS, 2003, 94 (09) : 5504 - 5513
  • [39] Properties of atmospheric pressure glow discharge with liquid electrolyte cathode
    Titov, V. A.
    Rybkin, V. V.
    Smirnov, S. A.
    Kulentsan, A. L.
    Choi, H. -S.
    HIGH TEMPERATURE MATERIAL PROCESSES, 2007, 11 (04): : 515 - 525
  • [40] Decomposition of toluene in a steady-state atmospheric-pressure glow discharge
    Trushkin, A. N.
    Grushin, M. E.
    Kochetov, I. V.
    Trushkin, N. I.
    Akishev, Yu. S.
    PLASMA PHYSICS REPORTS, 2013, 39 (02) : 167 - 182