Moment Matching for Multi-Source Domain Adaptation

被引:757
|
作者
Peng, Xingchao [1 ]
Bai, Qinxun [2 ]
Xia, Xide [1 ]
Huang, Zijun [3 ]
Saenko, Kate [1 ]
Wang, Bo [4 ,5 ]
机构
[1] Boston Univ, Boston, MA 02215 USA
[2] Horizon Robot, Beijing, Peoples R China
[3] Columbia Univ, New York, NY 10027 USA
[4] Vector Inst, Toronto, ON, Canada
[5] Peter Munk Cardiac Ctr, Toronto, ON, Canada
关键词
D O I
10.1109/ICCV.2019.00149
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conventional unsupervised domain adaptation (UDA) assumes that training data are sampled from a single domain. This neglects the more practical scenario where training data are collected from multiple sources, requiring multi-source domain adaptation. We make three major contributions towards addressing this problem. First, we collect and annotate by far the largest UDA dataset, called DomainNet, which contains six domains and about 0.6 million images distributed among 345 categories, addressing the gap in data availability for multi-source UDA research. Second, we propose a new deep learning approach, Moment Matching for Multi-Source Domain Adaptation (M(3)SDA), which aims to transfer knowledge learned from multiple labeled source domains to an unlabeled target domain by dynamically aligning moments of their feature distributions. Third, we provide new theoretical insights specifically for moment matching approaches in both single and multiple source domain adaptation. Extensive experiments are conducted to demonstrate the power of our new dataset in benchmarking state-of-the-art multi-source domain adaptation methods, as well as the advantage of our proposed model.
引用
收藏
页码:1406 / 1415
页数:10
相关论文
共 50 条
  • [21] Multi-source Domain Adaptation for Face Recognition
    Yi, Haiyang
    Xu, Zhi
    Wen, Yimin
    Fan, Zhigang
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 1349 - 1354
  • [22] Transformer Based Multi-Source Domain Adaptation
    Wright, Dustin
    Augenstein, Isabelle
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 7963 - 7974
  • [23] Automatic online multi-source domain adaptation
    Renchunzi, Xie
    Pratama, Mahardhika
    INFORMATION SCIENCES, 2022, 582 : 480 - 494
  • [24] Multi-source domain adaptation for image classification
    Karimpour, Morvarid
    Noori Saray, Shiva
    Tahmoresnezhad, Jafar
    Pourmahmood Aghababa, Mohammad
    MACHINE VISION AND APPLICATIONS, 2020, 31 (06)
  • [25] Multi-source domain adaptation for image classification
    Morvarid Karimpour
    Shiva Noori Saray
    Jafar Tahmoresnezhad
    Mohammad Pourmahmood Aghababa
    Machine Vision and Applications, 2020, 31
  • [26] Subspace Identification for Multi-Source Domain Adaptation
    Li, Zijian
    Cai, Ruichu
    Chen, Guangyi
    Sun, Boyang
    Hao, Zhifeng
    Zhang, Kun
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [27] Multi-Source Domain Adaptation via Latent Domain Reconstruction
    Zhou, Jun
    Fu, Chilin
    Zhang, Xiaolu
    COMPANION OF THE WORLD WIDE WEB CONFERENCE, WWW 2023, 2023, : 523 - 527
  • [28] Unsupervised multi-source domain adaptation with no observable source data
    Jeon, Hyunsik
    Lee, Seongmin
    Kang, U.
    PLOS ONE, 2021, 16 (07):
  • [29] Multi-EPL: Accurate multi-source domain adaptation
    Lee, Seongmin
    Jeon, Hyunsik
    Kang, U.
    PLOS ONE, 2021, 16 (08):
  • [30] Weighted progressive alignment for multi-source domain adaptation
    Kunhong Wu
    Liang Li
    Yahong Han
    Multimedia Systems, 2023, 29 : 117 - 128