Sums of monomials with large Mahler measure

被引:4
|
作者
Choi, Stephen [1 ]
Erdelyi, Tamas [2 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
关键词
Large sieve inequalities; Mahler measure; L-1; norm; Constrained coefficients; Fekete polynomials; Littlewood polynomials; Newman polynomials; Sums of monomials; REMEZ-TYPE; POLYNOMIALS; INEQUALITIES; ZEROS; BOUNDS; NORM;
D O I
10.1016/j.jat.2014.01.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n >= 1 let A(n) := {P : P(z) = Sigma(n)(j=1)z(kj) : 0 <= k(1) < k(2) < ... < k(n), k(j) is an element of Z}, that is, A(n) is the collection of all sums of n distinct monomials. These polynomials are also called Newman polynomials. If alpha < beta are real numbers then the Mahler measure M-0(Q, [alpha, beta]) is defined for bounded measurable functions Q(e(it)) on [alpha, beta] as M-0(Q, [alpha, beta]) := exp (1/beta - alpha integral(beta)(alpha) log vertical bar Q(e(it))vertical bar dt). Let I := [alpha, beta]. In this paper we examine the quantities L-n(0)(I) := sup M-P is an element of An(0)(P, I)/root n and L-0(I) := lim(n ->infinity) inf L-n(0) (I) with 0 < vertical bar I vertical bar := beta - alpha <= 2 pi. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 50 条
  • [31] An invariant property of Mahler measure
    Lalin, Matilde
    Nair, Siva Sankar
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (03) : 1129 - 1142
  • [32] The Infimum in the Metric Mahler Measure
    Samuels, Charles L.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2011, 54 (04): : 739 - 747
  • [33] Mahler measure of Pd polynomials
    Mehrabdollahei, Mahya
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2023, 35 (03): : 795 - 817
  • [34] On the Mahler Measure of Matrix Pencils
    Chesi, Graziano
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 5098 - 5103
  • [35] On the Mahler measure of hyperelliptic families
    Bertin M.J.
    Zudilin W.
    Annales mathématiques du Québec, 2017, 41 (1) : 199 - 211
  • [36] Mahler measure of polynomial iterates
    Pritsker, Igor
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (03): : 881 - 885
  • [37] A q-Mahler measure
    Kurokawa, N
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (05) : 70 - 73
  • [38] The Mahler measure of dihedral extensions
    Garza, John
    ACTA ARITHMETICA, 2008, 131 (03) : 201 - 215
  • [39] The Mahler measure of a Weierstrass form
    Lalin, Matilde N.
    Ramamonjisoa, Frank
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (08) : 2195 - 2214
  • [40] Mahler measure on Galois extensions
    Amoroso, Francesco
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (06) : 1605 - 1617