A Hybrid Neural Network Approach for Increasing the Absolute Accuracy of Industrial Robots

被引:15
|
作者
Landgraf, Christian [1 ]
Ernst, Kilian [1 ]
Schleth, Gesine [1 ]
Fabritius, Marc [1 ]
Huber, Marco F. [1 ,2 ]
机构
[1] Fraunhofer Inst Mfg Engn & Automat IPA, Nobelstr 12, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Inst Ind Mfg & Management IFF, Allmandring 35, D-70569 Stuttgart, Germany
关键词
PARAMETER-IDENTIFICATION; CALIBRATION;
D O I
10.1109/CASE49439.2021.9551684
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The comparatively poor positioning accuracy of industrial robots limits or even prevents their use in many industrial applications. In contrast to other fields of robotic research, robot accuracy improvement has not been significantly boosted by machine learning-based methods yet. For this reason, we carried out four comprehensive series of measurements using a high-precision laser tracker together with a widely used 6-axis articulated robot. The data will be made publicly available to serve as benchmark data for different techniques. Along with the dataset, this paper introduces a hybrid neural network-based approach to compensate both geometric and non-geometric error sources and increase robot positioning accuracy. We compare our method to previous works and demonstrate advanced results.
引用
收藏
页码:468 / 474
页数:7
相关论文
共 50 条
  • [41] Calibrating Industrial Robots with Absolute Position Tracking System
    Novak, Petr
    Stoszek, Simon
    Vyskocil, Jiri
    2020 25TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2020, : 1187 - 1190
  • [42] Improving the absolute positioning accuracy of industrial robots based on OP-ELM and an enhanced backtracking search algorithm
    Haihong Pan
    Yukang Cai
    Bingqi Jia
    Lulu Li
    Lin Chen
    Intelligent Service Robotics, 2025, 18 (2) : 247 - 260
  • [43] Accuracy Analysis and Improvement for Cooperative Industrial Robots
    Wagner, M.
    Buschhaus, A.
    Reitelshoefer, S.
    Hess, P.
    Franke, J.
    ICINCO: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS - VOL 2, 2017, : 539 - 546
  • [44] Hybrid workcell models for industrial robots
    Hybride Zellenmodelle für Industrieroboter: Kombination von Umgebungsscans und kinematischen Modellen für die virtuelle Inbetriebnahme
    1600, VDI Fachmedien GmBH & Co. KG (103): : 699 - 705
  • [45] Machine-learning-based approach to improve the positioning accuracy of large industrial robots
    Yoshitsugu, K.
    Kato, D.
    Hirogaki, T.
    Aoyama, E.
    Takahashi, K.
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 323 - 328
  • [46] Absolute Positioning Accuracy Improvement in an Industrial Robot
    Jiang, Yizhou
    Yu, Liandong
    Jia, Huakun
    Zhao, Huining
    Xia, Haojie
    SENSORS, 2020, 20 (16) : 1 - 14
  • [47] Virtual Pheromones to Control Mobile Robots. A Neural Network Approach
    Susnea, Ioan
    Vasiliu, Grigore
    Filipescu, Adrian
    Serbencu, Adriana
    Radaschin, Adrian
    2009 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS ( ICAL 2009), VOLS 1-3, 2009, : 1961 - 1966
  • [48] Artificial Neural Network Approach for Solving Forward Kinematics of Cable Robots
    Tho, Tuong Phuoc
    Thinh, Nguyen Truong
    INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND ROBOTICS RESEARCH, 2024, 13 (02): : 184 - 189
  • [49] Manifold absolute pressure estimation using neural network with hybrid training algorithm
    Muslim, Mohd Taufiq
    Selamat, Hazlina
    Alimin, Ahmad Jais
    Haniff, Mohamad Fadzli
    PLOS ONE, 2017, 12 (11):
  • [50] Increasing the Milling Accuracy for Industrial Robots Using a Piezo-Actuated High-Dynamic Micro Manipulator
    Sornmo, Olof
    Olofsson, Bjorn
    Schneider, Ulrich
    Robertsson, Anders
    Johansson, Rolf
    2012 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2012, : 104 - 110