Globally Stable Adaptive Tracking Control Using RBF Neural Networks as Feedforward Compensator

被引:1
|
作者
Chen, Weisheng [1 ]
Du, Zhenbin [2 ]
机构
[1] Xidian Univ, Dept Appl Math, Xian 710071, Peoples R China
[2] Yantai Univ, Sch Comp Sci & Technol, Yantai 264005, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Adaptive tracking control; Backstepping; Feedforward compensators; Global stability; Neural networks; DISCRETE-TIME-SYSTEMS; UNCERTAIN NONLINEAR-SYSTEMS; OUTPUT-FEEDBACK CONTROL; DYNAMIC SURFACE CONTROL; NN CONTROL; BACKSTEPPING CONTROL; DELAY SYSTEMS; FORM; DISTURBANCES;
D O I
10.1109/WCICA.2010.5554919
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, it is showed that if neural networks are used as feedforward compensators instead of feedback ones, then we can ensure the global stability of closed-loop systems and determine the neural network approximation domain via the bound of known reference signals. It should be pointed out that this domain is very important for designing the neural network structure, for example, it directly determines the choice of the centers of radial basis function neural networks.
引用
下载
收藏
页码:1067 / 1070
页数:4
相关论文
共 50 条
  • [21] Globally Stable Adaptive Neural Network Tracking Control for Uncertain Output-Feedback Systems With Prior Tracking Accuracy
    Zhang, Zhengqiang
    Wang, Qiufeng
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1101 - 1105
  • [22] Adaptive Tracking Control of Nonlinear Systems Using Neural Networks
    Niu, Lin
    Ye, Liaoyuan
    2009 INTERNATIONAL ASIA CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION, AND ROBOTICS, PROCEEDINGS, 2009, : 12 - +
  • [23] Stable adaptive control for nonlinear systems using neural networks
    Shi, Y
    Mu, CD
    Yan, WS
    Li, J
    Xu, DM
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 979 - 983
  • [24] Stable adaptive control using fuzzy systems and neural networks
    Spooner, JT
    Passino, KM
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1996, 4 (03) : 339 - 359
  • [25] Adaptive Backstepping control for MAPK cascade models using RBF Neural Networks
    Vamvoudakis, Kyriakos G.
    Christodoulou, Manolis A.
    2007 MEDITERRANEAN CONFERENCE ON CONTROL & AUTOMATION, VOLS 1-4, 2007, : 173 - 178
  • [26] Robust and adaptive backstepping control for nonlinear systems using RBF neural networks
    Li, YH
    Qiang, S
    Zhuang, XY
    Kaynak, O
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2004, 15 (03): : 693 - 701
  • [27] Robust adaptive tracking control of delta wing vortex-coupled roll dynamics using RBF neural networks
    Pakmehr, M
    Gordon, BW
    Rabbath, CA
    2005 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), VOLS 1AND 2, 2005, : 1039 - 1043
  • [28] Adaptive Neural Dynamic Compensator for Mobile Robots in Trajectory Tracking Control
    Rossomando, F. G.
    Soria, C.
    Carelli, R.
    IEEE LATIN AMERICA TRANSACTIONS, 2011, 9 (05) : 593 - 602
  • [29] Robust RBF Neural Network Control with Adaptive Sliding Mode Compensator for MEMS Gyroscope
    Fei, Juntao
    Yang, Yuzheng
    Wu, Dan
    2013 IEEE/ACIS 12TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS), 2013, : 449 - 454
  • [30] A Study of Determining an Adaptive Control Input without Using a Parallel Feedforward Compensator
    Tanaka, Ryo
    Koga, Tetsunori
    Ikeda, Kazuki
    2017 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2017,