On the Cauchy problem for a generalized Degasperis-Procesi equation

被引:1
|
作者
Ye Weikui [1 ]
Yin Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
Adrian Constantin; A generalized Degasperis-Procesi equation; local well-posedness; global existence; bseov spaces; blow-up; SHALLOW-WATER EQUATION; GLOBAL WEAK SOLUTIONS; BLOW-UP PHENOMENA; WELL-POSEDNESS; INTEGRABLE EQUATION; PARTICLE TRAJECTORIES; WAVE SOLUTIONS; SHOCK-WAVES; EXISTENCE; BREAKING;
D O I
10.1080/00036811.2018.1529306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first establish the local well-posedness for a generalized Degasperis-Procesi equation in nonhomogeneous Besov spaces. Then we present a global existence result for the equation. Moreover, we obtain a blow-up criteria and provide a sufficient condition for strong solutions to blow up in finite time.
引用
收藏
页码:1300 / 1315
页数:16
相关论文
共 50 条