Conditionality of inverse solutions to discretised integral equations in geoid modelling from local gravity data

被引:4
|
作者
Tenzer, R. [1 ]
Novak, P. [2 ,3 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn Phys & Space Geodesy PSG, NL-2629 HS Delft, Netherlands
[2] Res Inst Geodesy Topog & Cartog, Ondrejov 25165 244, Czech Republic
[3] Univ Western Bohemia, Dept Math, Plzen 30614, Czech Republic
关键词
geoid; gravity; inverse problem; numerical stability;
D O I
10.1007/s11200-008-0005-3
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The eigenvalue decomposition technique is used for analysis of conditionality of two alternative solutions for a determination of the geoid from local gravity data. The first solution is based on the standard two-step approach utilising the inverse of the Abel-Poisson integral equation (downward continuation) and consequently the Stokes/Hotine integration (gravity inversion). The second solution is based on a single integral that combines the downward continuation and the gravity inversion in one integral equation. Extreme eigenvalues and corresponding condition numbers of matrix operators are investigated to compare the stability of inverse problems of the above-mentioned computational models. To preserve a dominantly diagonal structure of the matrices for inverse solutions, the horizontal positions of the parameterised solution on the geoid and of data points are identical. The numerical experiments using real data reveal that the direct gravity inversion is numerically more stable than the downward continuation procedure in the two-step approach.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 50 条
  • [21] On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation
    Tao Jiang
    Yan Ming Wang
    Journal of Geodesy, 2016, 90 : 1405 - 1418
  • [22] Local multiscale modelling of geoid undulations from deflections of the vertical
    Freeden, W
    Schreiner, M
    JOURNAL OF GEODESY, 2006, 79 (10-11) : 641 - 651
  • [23] GEOID DETERMINATION IN CENTRAL SPAIN FROM GRAVITY AND HEIGHT DATA
    GIL, AJ
    SEVILLA, MJ
    RODRIGUEZCADEROT, G
    BULLETIN GEODESIQUE, 1993, 67 (01): : 41 - 50
  • [25] Modelling geoid height errors for local areas based on data of global models
    Savchuk, Stepan
    Fedorchuk, Alina
    Marjanska, Dorota
    JOURNAL OF APPLIED GEODESY, 2024,
  • [26] A high-resolution gravimetric geoid model for Japan from EGM2008 and local gravity data
    Odera, Patroba Achola
    Fukuda, Yoichi
    Kuroishi, Yuki
    EARTH PLANETS AND SPACE, 2012, 64 (05): : 361 - 368
  • [27] A high-resolution gravimetric geoid model for Japan from EGM2008 and local gravity data
    Patroba Achola Odera
    Yoichi Fukuda
    Yuki Kuroishi
    Earth, Planets and Space, 2012, 64 : 361 - 368
  • [28] THE EXISTENCE OF SOLUTIONS OF INTEGRAL EQUATIONS RELATED TO INVERSE PROBLEMS OF QUASILINEAR ORDINARY DIFFERENTIAL EQUATIONS
    Usami, Hiroyuki
    Yoshimi, Takuro
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2012, 57 : 163 - 176
  • [29] Numerical modelling of qualitative behaviour of solutions to convolution integral equations
    Ford, Neville J.
    Diogo, Teresa
    Ford, Judith M.
    Lima, Pedro
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (02) : 849 - 858
  • [30] Detection of Local Geoid Deformations by Gravity Disturbances from GPS/Gravimetric Observations
    A. Martín
    A.B. Anquela
    J. Padín
    J.L. Berné
    Studia Geophysica et Geodaetica, 2005, 49 : 43 - 62