Conditionality of inverse solutions to discretised integral equations in geoid modelling from local gravity data

被引:4
|
作者
Tenzer, R. [1 ]
Novak, P. [2 ,3 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn Phys & Space Geodesy PSG, NL-2629 HS Delft, Netherlands
[2] Res Inst Geodesy Topog & Cartog, Ondrejov 25165 244, Czech Republic
[3] Univ Western Bohemia, Dept Math, Plzen 30614, Czech Republic
关键词
geoid; gravity; inverse problem; numerical stability;
D O I
10.1007/s11200-008-0005-3
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The eigenvalue decomposition technique is used for analysis of conditionality of two alternative solutions for a determination of the geoid from local gravity data. The first solution is based on the standard two-step approach utilising the inverse of the Abel-Poisson integral equation (downward continuation) and consequently the Stokes/Hotine integration (gravity inversion). The second solution is based on a single integral that combines the downward continuation and the gravity inversion in one integral equation. Extreme eigenvalues and corresponding condition numbers of matrix operators are investigated to compare the stability of inverse problems of the above-mentioned computational models. To preserve a dominantly diagonal structure of the matrices for inverse solutions, the horizontal positions of the parameterised solution on the geoid and of data points are identical. The numerical experiments using real data reveal that the direct gravity inversion is numerically more stable than the downward continuation procedure in the two-step approach.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 50 条
  • [1] Conditionality of inverse solutions to discretised integral equations in geoid modelling from local gravity data
    R. Tenzer
    P. Novák
    Studia Geophysica et Geodaetica, 2008, 52 : 53 - 70
  • [2] Improving the Accuracy of Local Gravimetric Geoid Modelling Using Simulated Terrestrial Gravity Data
    Jalal, Shazad Jamal
    Musa, Tajul Ariffin
    Din, Ami Hassan Md
    Aris, Wan Anom Wan
    Pa'suya, Muhammad Faiz
    PURE AND APPLIED GEOPHYSICS, 2022, 179 (08) : 2869 - 2887
  • [3] Improving the Accuracy of Local Gravimetric Geoid Modelling Using Simulated Terrestrial Gravity Data
    Shazad Jamal Jalal
    Tajul Ariffin Musa
    Ami Hassan Md Din
    Wan Anom Wan Aris
    Muhammad Faiz Pa’suya
    Pure and Applied Geophysics, 2022, 179 : 2869 - 2887
  • [4] Determining accuracy of local geoid determined from airborne gravity data
    Sun, Zhongmiao
    Xia, Zheren
    Wang, Xingtao
    Geomatics and Information Science of Wuhan University, 2007, 32 (08) : 692 - 695
  • [5] Accuracy and resolution of the local geoid determined from airborne gravity data
    Schwarz, KP
    Li, YC
    GRAVITY GEOID AND GEODYNAMICS 2000, 2002, 123 : 241 - 246
  • [6] Local geoid determination based on airborne gravity data
    Hajkova, Jitka
    STUDIA GEOPHYSICA ET GEODAETICA, 2011, 55 (03) : 515 - 528
  • [7] Local geoid determination based on airborne gravity data
    Jitka Hájková
    Studia Geophysica et Geodaetica, 2011, 55 : 515 - 528
  • [8] Clustering analysis of gravity data to compute local geoid
    Wang Shuwei
    Wang Shuwei
    Li Fei
    Shu Chanfang
    Ke Baogui
    2008 INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND TRAINING AND 2008 INTERNATIONAL WORKSHOP ON GEOSCIENCE AND REMOTE SENSING, VOL 2, PROCEEDINGS,, 2009, : 380 - +
  • [9] LOCAL GEOID FROM CURVATURE GRADIENTS OF GRAVITY
    BADEKAS, J
    MUELLER, I
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1968, 49 (01): : 116 - &
  • [10] Qualitative behaviour and stability of solutions of discretised nonlinear Volterra integral equations of convolution type
    Ford, NJ
    Baker, CTH
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 66 (1-2) : 213 - 225