Heat transfer and entropy generation of water-Fe3O4 nanofluid under magnetic field by Euler-Lagrange method

被引:22
|
作者
Gorjaei, Arash Rezaei [1 ]
Joda, Fatemeh [1 ]
Khoshkhoo, Ramin Haghighi [1 ]
机构
[1] Shahid Beheshti Univ, Fac Mech & Energy Engn, Tehran, Iran
关键词
Nanofluid; Concentration; Entropy generation; Magnetic field; Euler-Lagrange; AL(2)O(3)-WATER NANOFLUID; FORCED-CONVECTION; MIXED CONVECTION; WATER NANOFLUID; POROUS-MEDIA; 2ND LAW; FLOW; FERROFLUID; PARTICLES; CHANNEL;
D O I
10.1007/s10973-019-08627-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Euler-Lagrange method is considered to simulate the water-Fe3O4 nanofluid inside a circular tube. The non-uniform magnetic field is employed to a part of the tube. The effects of Reynolds number, concentration and magnetic field are investigated. The obtained results show that by increasing the magnetic field strength, global frictional entropy generation rate enhances. Meanwhile, with the application of the magnetic field, the frictional entropy generation rate in the central region of the tube and the vicinity of the wall decreases and increases, respectively. Additionally, the Bejan number is approximately 1 near the outlet. Also, there is a non-uniform distribution for nanoparticles, and the concentration of nanoparticles in the tube center is higher than the wall adjacency. Moreover, the wall temperature of the tube decreases in the part where the magnetic field is applied. The use of nanoparticle leads to an increase in the convective heat transfer coefficient. The velocity of the nanofluid in the central part of the tube decreases with the application of the magnetic field. But, the flow velocity near the wall increases with increasing magnetic field strength.
引用
收藏
页码:2023 / 2034
页数:12
相关论文
共 50 条
  • [31] Heat transfer enhancement of Fe3O4-water nanofluid by the thermo-magnetic convection and thermophorestic effect
    Du, Jiayou
    Wang, Ruijin
    Zhuo, Qiuyi
    Yuan, Weijia
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (07) : 9521 - 9532
  • [32] The microchannel type effects on water-Fe3O4 nanofluid atomic behavior: Molecular dynamics approach
    Hu, Xuefang
    Derakhshanfard, Amir Hossein
    Patra, Ndrajit
    Khalid, Imran
    Jalil, Abduladheem Turki
    Opulencia, Maria Jade Catalan
    Dehkordi, Reza Balali
    Toghraie, Davood
    Hekmatifar, Maboud
    Sabetvand, Roozbeh
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 135
  • [33] Influence of electric field on Fe3O4- water nanofluid radiative and convective heat transfer in a permeable enclosure
    Sheikholeslami, M.
    Ganji, D. D.
    JOURNAL OF MOLECULAR LIQUIDS, 2018, 250 : 404 - 412
  • [34] Exploring the heat transfer and entropy generation of Ag/Fe3O4-blood nanofluid flow in a porous tube: a collocation solution
    Basha, H. Thameem
    Sivaraj, R.
    EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (03):
  • [35] The influence of the magnetic field on the convective heat transfer characteristics of Fe3O4/water nanofluids
    Sha, Lili
    Ju, Yonglin
    Zhang, Hua
    APPLIED THERMAL ENGINEERING, 2017, 126 : 108 - 116
  • [36] FHD and MHD effects of Fe3O4-water magnetic nanofluid on the enhancement of overall heat transfer coefficient of a heat exchanger
    Pourhoseini, S. H.
    Ramezani-Aval, H.
    Naghizadeh, N.
    PHYSICA SCRIPTA, 2020, 95 (04)
  • [37] Flow field, heat transfer and entropy generation of nanofluid in a microchannel using the finite volume method
    Kerdarian M.
    Kianpour E.
    Journal of Computational and Applied Research in Mechanical Engineering, 1600, 8 (02): : 211 - 222
  • [38] Heat transfer and flow characteristics of Fe3O4 -water nanofluids under magnetic excitation
    Zhang, Xilong
    Zhang, Yongliang
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2021, 163
  • [39] Numerical investigation on turbulent flow, heat transfer, and entropy generation of water-based magnetic nanofluid flow in a tube with hemisphere porous under a uniform magnetic field
    Soleymani, Peyman
    Ma, Yuan
    Saffarifard, Ehsan
    Mohebbi, Rasul
    Babaie, Meisam
    Karimi, Nader
    Saedodin, Seyfolah
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 137
  • [40] Numerical Investigation of the Nanoparticle Volume Fraction Effect on the Flow, Heat Transfer, and Entropy Generation of the Fe3O4 Ferrofluid under a Non-uniform Magnetic Field
    Hosseinzadeh, Fazel
    Sarhaddi, Faramarz
    Mohebbi-Kalhori, Davod
    STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2016, 62 (09): : 521 - 533