Heat transfer and entropy generation of water-Fe3O4 nanofluid under magnetic field by Euler-Lagrange method

被引:22
|
作者
Gorjaei, Arash Rezaei [1 ]
Joda, Fatemeh [1 ]
Khoshkhoo, Ramin Haghighi [1 ]
机构
[1] Shahid Beheshti Univ, Fac Mech & Energy Engn, Tehran, Iran
关键词
Nanofluid; Concentration; Entropy generation; Magnetic field; Euler-Lagrange; AL(2)O(3)-WATER NANOFLUID; FORCED-CONVECTION; MIXED CONVECTION; WATER NANOFLUID; POROUS-MEDIA; 2ND LAW; FLOW; FERROFLUID; PARTICLES; CHANNEL;
D O I
10.1007/s10973-019-08627-5
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Euler-Lagrange method is considered to simulate the water-Fe3O4 nanofluid inside a circular tube. The non-uniform magnetic field is employed to a part of the tube. The effects of Reynolds number, concentration and magnetic field are investigated. The obtained results show that by increasing the magnetic field strength, global frictional entropy generation rate enhances. Meanwhile, with the application of the magnetic field, the frictional entropy generation rate in the central region of the tube and the vicinity of the wall decreases and increases, respectively. Additionally, the Bejan number is approximately 1 near the outlet. Also, there is a non-uniform distribution for nanoparticles, and the concentration of nanoparticles in the tube center is higher than the wall adjacency. Moreover, the wall temperature of the tube decreases in the part where the magnetic field is applied. The use of nanoparticle leads to an increase in the convective heat transfer coefficient. The velocity of the nanofluid in the central part of the tube decreases with the application of the magnetic field. But, the flow velocity near the wall increases with increasing magnetic field strength.
引用
收藏
页码:2023 / 2034
页数:12
相关论文
共 50 条
  • [1] Heat transfer and entropy generation of water–Fe3O4 nanofluid under magnetic field by Euler–Lagrange method
    Arash Rezaei Gorjaei
    Fatemeh Joda
    Ramin Haghighi Khoshkhoo
    Journal of Thermal Analysis and Calorimetry, 2020, 139 : 2023 - 2034
  • [2] Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus
    Shahsavar, Amin
    Sardari, Pouyan Talebizadeh
    Toghraie, D.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (03) : 915 - 934
  • [3] Studying flow and heat transfer characteristics of magnetic nanofluid under the effect of magnetic field using Euler-Lagrange approach
    Bahiraei, Mehdi
    Hangi, Morteza
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2014, 46 (03) : 555 - 567
  • [4] Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method
    Al-Kouz, Weal
    Abderrahmane, Aissa
    Shamshuddin, Md
    Younis, Obai
    Mohammed, Sahnoun
    Beg, O. Anwar
    Toghraie, Davood
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (11):
  • [5] Heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid magnetic nanofluid flow in a trapezoidal wavy enclosure containing porous media with the Galerkin finite element method
    Weal Al-Kouz
    Aissa Abderrahmane
    MD. Shamshuddin
    Obai Younis
    Sahnoun Mohammed
    O. Anwar Bég
    Davood Toghraie
    The European Physical Journal Plus, 136
  • [6] A numerical study of heat transfer characteristics of CuO-water nanofluid by Euler-Lagrange approach
    Bahiraei, Mehdi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 123 (02) : 1591 - 1599
  • [7] Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field
    Mehrali, Mohammad
    Sadeghinezhad, Emad
    Akhiani, Amir Reza
    Latibari, Sara Tahan
    Metselaar, Hendrik Simon Cornelis
    Kherbeet, A. Sh.
    Mehrali, Mehdi
    POWDER TECHNOLOGY, 2017, 308 : 149 - 157
  • [8] MHD free convection heat transfer of a water-Fe3O4 nanofluid in a baffled C-shaped enclosure
    Abedini, A.
    Armaghani, T.
    Chamkha, Ali J.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 135 (01) : 685 - 695
  • [9] Impact of oscillating magnetic field on the thermal-conductivity of water-Fe3O4 and water-Fe3O4/CNT ferro-fluids: Experimental study
    Liu, W. I.
    Alsarraf, Jalal
    Shahsavar, Amin
    Rostamzadeh, Mahfouz
    Afrand, Masoud
    Truong Khang Nguyen
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 484 : 258 - 265
  • [10] Free convection of water-Fe3O4 nanofluid in an inclined cavity subjected to a magnetic field: CFD modeling, sensitivity analysis
    Rahimpour, Neshat
    Moraveji, Mostafa Keshavarz
    ADVANCED POWDER TECHNOLOGY, 2017, 28 (06) : 1573 - 1584