Spanning surfaces in 3-graphs

被引:5
|
作者
Georgakopoulos, Agelos [1 ]
Haslegrave, John [1 ]
Montgomery, Richard [2 ]
Narayanan, Bhargav [3 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
英国科研创新办公室; 欧洲研究理事会;
关键词
Extremal simplicial topology; spanning structures in hypergraphs; Dirac's theorem; triangulated surfaces; THEOREM; GRAPHS;
D O I
10.4171/JEMS/1101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a topological extension of Dirac's theorem suggested by Gowers in 2005: for any connected, closed surface S, we show that any two-dimensional simplicial complex on n vertices in which each pair of vertices belongs to at least n3 + o(n) facets contains a homeomorph of S spanning all the vertices. This result is asymptotically sharp, and implies in particular that any 3-uniform hypergraph on n vertices with minimum codegree exceeding n3 + o(n) contains a spanning triangulation of the sphere.
引用
收藏
页码:303 / 339
页数:37
相关论文
共 50 条
  • [21] A TURAN-TYPE PROBLEM ON 3-GRAPHS
    ZHOU, B
    ARS COMBINATORIA, 1991, 31 : 177 - 181
  • [22] Turan H-densities for 3-graphs
    Ravry, Victor Falgas
    Vaughan, Emil R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [23] Triangle-degrees in graphs and tetrahedron coverings in 3-graphs
    Falgas-Ravry, Victor
    Markstrom, Klas
    Zhao, Yi
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 175 - 199
  • [24] Ryser's conjecture for tripartite 3-graphs
    Aharoni, R
    COMBINATORICA, 2001, 21 (01) : 1 - 4
  • [25] ON RAMSEY-TURAN NUMBERS FOR 3-GRAPHS
    SIDORENKO, AF
    JOURNAL OF GRAPH THEORY, 1992, 16 (01) : 73 - 78
  • [26] Hamiltonicity in Cherry-quasirandom 3-graphs
    Gan, Luyining
    Han, Jie
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102
  • [27] Ryser's Conjecture for Tripartite 3-Graphs
    Ron Aharoni
    Combinatorica, 2001, 21 : 1 - 4
  • [28] THE CODEGREE THRESHOLD FOR 3-GRAPHS WITH INDEPENDENT NEIGHBORHOODS
    Falgas-Ravry, Victor
    Marchant, Edward
    Pikhurko, Oleg
    Vaughan, Emil R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) : 1504 - 1539
  • [29] An exact Turan result for tripartite 3-graphs
    Sanitt, Adam
    Talbot, John
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):
  • [30] A Stability Theorem for Matchings in Tripartite 3-Graphs
    Haxell, Penny
    Narins, Lothar
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (05): : 774 - 793