Spanning surfaces in 3-graphs

被引:5
|
作者
Georgakopoulos, Agelos [1 ]
Haslegrave, John [1 ]
Montgomery, Richard [2 ]
Narayanan, Bhargav [3 ]
机构
[1] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[2] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
英国科研创新办公室; 欧洲研究理事会;
关键词
Extremal simplicial topology; spanning structures in hypergraphs; Dirac's theorem; triangulated surfaces; THEOREM; GRAPHS;
D O I
10.4171/JEMS/1101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a topological extension of Dirac's theorem suggested by Gowers in 2005: for any connected, closed surface S, we show that any two-dimensional simplicial complex on n vertices in which each pair of vertices belongs to at least n3 + o(n) facets contains a homeomorph of S spanning all the vertices. This result is asymptotically sharp, and implies in particular that any 3-uniform hypergraph on n vertices with minimum codegree exceeding n3 + o(n) contains a spanning triangulation of the sphere.
引用
收藏
页码:303 / 339
页数:37
相关论文
共 50 条
  • [1] On 3-graphs with no four vertices spanning exactly two edges
    Gishboliner, Lior
    Tomon, Istvan
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (06) : 2117 - 2134
  • [2] Cycles in Oriented 3-Graphs
    Leader, Imre
    Tan, Ta Sheng
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 54 (02) : 432 - 443
  • [3] AN EXACT RESULT FOR 3-GRAPHS
    FRANKL, P
    FUREDI, Z
    DISCRETE MATHEMATICS, 1984, 50 (2-3) : 323 - 328
  • [4] A structural result for 3-graphs
    Frankl, P.
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1039 - 1041
  • [5] WQO dichotomy for 3-graphs
    Lasota, Slawomir
    Piorkowski, Radoslaw
    INFORMATION AND COMPUTATION, 2020, 275
  • [6] EXTREMAL PROBLEM FOR 3-GRAPHS
    FRANKL, P
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 32 (1-2): : 157 - 160
  • [7] On partition functions for 3-graphs
    Regts, Guus
    Schrijver, Alexander
    Sevenster, Bart
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 121 : 421 - 431
  • [8] WQO Dichotomy for 3-Graphs
    Lasota, Slawomir
    Piorkowski, Radoslaw
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, FOSSACS 2018, 2018, 10803 : 548 - 564
  • [9] Cycles in Oriented 3-Graphs
    Imre Leader
    Ta Sheng Tan
    Discrete & Computational Geometry, 2015, 54 : 432 - 443
  • [10] UNAVOIDABLE STARS IN 3-GRAPHS
    CHUNG, FRK
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1983, 35 (03) : 252 - 262