A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery Based Brain-Computer Interface

被引:32
|
作者
Jin, Jing [1 ]
Sun, Hao [1 ]
Daly, Ian [2 ]
Li, Shurui [1 ]
Liu, Chang [1 ]
Wang, Xingyu [1 ]
Cichocki, Andrzej [3 ,4 ,5 ]
机构
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200231, Peoples R China
[2] Univ Essex, Brain Comp Interfacing & Neural Engn Lab, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England
[3] Skolkovo Inst Sci & Technol SKOLTECH, Moscow 143026, Russia
[4] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
[5] Nicolaus Copernicus Univ UMK, PL-87100 Torun, Poland
基金
中国国家自然科学基金;
关键词
Task analysis; Electroencephalography; Image edge detection; Electrodes; Mutual information; Entropy; Symmetric matrices; Motor imagery (MI); electroencephalogram (EEG); functional connectivity; graph representation; FUNCTIONAL CONNECTIVITY; EEG; TIME; COMPONENTS; EXECUTION; PATTERNS;
D O I
10.1109/TNSRE.2021.3139095
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The motor imagery (MI) based brain-computer interfaces (BCIs) have been proposed as a potential physical rehabilitation technology. However, the low classification accuracy achievable with MI tasks is still a challenge when building effective BCI systems. We propose a novel MI classification model based on measurement of functional connectivity between brain regions and graph theory. Specifically, motifs describing local network structures in the brain are extracted from functional connectivity graphs. A graph embedding model called Ego-CNNs is then used to build a classifier, which can convert the graph from a structural representation to a fixed-dimensional vector for detecting critical structure in the graph. We validate our proposed method on four datasets, and the results show that our proposed method produces high classification accuracies in two-class classification tasks (92.8% for dataset 1, 93.4% for dataset 2, 96.5% for dataset 3, and 80.2% for dataset 4) and multiclass classification tasks (90.33% for dataset 1). Our proposed method achieves a mean Kappa value of 0.88 across nine participants, which is superior to other methods we compared it to. These results indicate that there is a local structural difference in functional connectivity graphs extracted under different motor imagery tasks. Our proposed method has great potential for motor imagery classification in future studies.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 50 条
  • [41] DEVELOPMENT OF AN ELECTROENCEPHALOGRAM-BASED BRAIN-COMPUTER INTERFACE
    WOLPAW, JR
    MCFARLAND, DJ
    NEAT, GW
    FORNERIS, CA
    ANNALS OF NEUROLOGY, 1990, 28 (02) : 250 - 251
  • [42] Phase Transition in previous Motor Imagery affects Efficiency of Motor Imagery based Brain-computer Interface
    Jung, Min-Kyung
    Lee, Seho
    Wang, In-Nea
    Song, Ha-Yoon
    Kim, Hakseung
    Kim, Dong-Joo
    2021 9TH IEEE INTERNATIONAL WINTER CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2021, : 333 - 336
  • [43] Multiclass Informative Instance Transfer Learning Framework for Motor Imagery-Based Brain-Computer Interface
    Hossain, Ibrahim
    Khosravi, Abbas
    Hettiarachchi, Imali
    Nahavandi, Saeid
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2018, 2018
  • [44] Virtual Drone Control Using Brain-Computer Interface Based on Motor Imagery Brain Magnetic Fields
    Tan, Gaobo
    Gai, Jinming
    Guo, Ruihan
    Zhang, Guiying
    Lin, Qiang
    Hu, Zhenghui
    HUMAN BRAIN AND ARTIFICIAL INTELLIGENCE, HBAI 2022, 2023, 1692 : 161 - 171
  • [45] Manifold Learning-based Subspace Method for Motor Imagery EEG Classification in Brain-Computer Interface
    Reddy, C. Sivananda
    Reddy, Ramasubba M.
    2023 29TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE, M2VIP 2023, 2023,
  • [46] A Filtering Method for Classification of Motor-Imagery EEG Signals for Brain-Computer Interface
    Ramya, Pinisetty Sri
    Yashasvi, Kondabolu
    Anjum, Arshiya
    Bhattacharyya, Abhijit
    Pachori, Ram Bilas
    PROCEEDINGS OF 2019 5TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K19), 2019, : 354 - 360
  • [47] Transfer Kernel Common Spatial Patterns for Motor Imagery Brain-Computer Interface Classification
    Dai, Mengxi
    Zheng, Dezhi
    Liu, Shucong
    Zhang, Pengju
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2018, 2018 : 9871603
  • [48] Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface
    Corsi, Marie-Constance
    Chavez, Mario
    Schwartz, Denis
    Hugueville, Laurent
    Khambhati, Ankit N.
    Bassett, Danielle S.
    Fallani, Fabrizio De Vico
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (01)
  • [49] Increase performance of four-class classification for Motor-Imagery based Brain-Computer Interface
    Le Quoc Thang
    Temiyasathit, Chivalai
    2014 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2014,
  • [50] Sparse representation-based classification scheme for motor imagery-based brain-computer interface systems
    Shin, Younghak
    Lee, Seungchan
    Lee, Junho
    Lee, Heung-No
    JOURNAL OF NEURAL ENGINEERING, 2012, 9 (05)