A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery Based Brain-Computer Interface

被引:32
|
作者
Jin, Jing [1 ]
Sun, Hao [1 ]
Daly, Ian [2 ]
Li, Shurui [1 ]
Liu, Chang [1 ]
Wang, Xingyu [1 ]
Cichocki, Andrzej [3 ,4 ,5 ]
机构
[1] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200231, Peoples R China
[2] Univ Essex, Brain Comp Interfacing & Neural Engn Lab, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England
[3] Skolkovo Inst Sci & Technol SKOLTECH, Moscow 143026, Russia
[4] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
[5] Nicolaus Copernicus Univ UMK, PL-87100 Torun, Poland
基金
中国国家自然科学基金;
关键词
Task analysis; Electroencephalography; Image edge detection; Electrodes; Mutual information; Entropy; Symmetric matrices; Motor imagery (MI); electroencephalogram (EEG); functional connectivity; graph representation; FUNCTIONAL CONNECTIVITY; EEG; TIME; COMPONENTS; EXECUTION; PATTERNS;
D O I
10.1109/TNSRE.2021.3139095
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The motor imagery (MI) based brain-computer interfaces (BCIs) have been proposed as a potential physical rehabilitation technology. However, the low classification accuracy achievable with MI tasks is still a challenge when building effective BCI systems. We propose a novel MI classification model based on measurement of functional connectivity between brain regions and graph theory. Specifically, motifs describing local network structures in the brain are extracted from functional connectivity graphs. A graph embedding model called Ego-CNNs is then used to build a classifier, which can convert the graph from a structural representation to a fixed-dimensional vector for detecting critical structure in the graph. We validate our proposed method on four datasets, and the results show that our proposed method produces high classification accuracies in two-class classification tasks (92.8% for dataset 1, 93.4% for dataset 2, 96.5% for dataset 3, and 80.2% for dataset 4) and multiclass classification tasks (90.33% for dataset 1). Our proposed method achieves a mean Kappa value of 0.88 across nine participants, which is superior to other methods we compared it to. These results indicate that there is a local structural difference in functional connectivity graphs extracted under different motor imagery tasks. Our proposed method has great potential for motor imagery classification in future studies.
引用
收藏
页码:20 / 29
页数:10
相关论文
共 50 条
  • [1] A Novel Classification Method for Motor Imagery Based on Brain-Computer Interface
    Chen, Chih-Yu
    Wu, Chun-Wei
    Lin, Chin-Teng
    Chen, Shi-An
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 4099 - 4102
  • [2] Feature Extraction of Brain-Computer Interface Electroencephalogram Based on Motor Imagery
    Shi, Tianwei
    Ren, Ling
    Cui, Wenhua
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11787 - 11794
  • [3] Using a Novel LDA-Ensemble Framework to Classification of Motor Imagery Tasks for Brain-Computer Interface Applications
    Chiu, Ching-Yu
    Chen, Chih-Yu
    Lin, Yang-Yin
    Chen, Shi-An
    Lin, Chin-Teng
    INTELLIGENT SYSTEMS AND APPLICATIONS (ICS 2014), 2015, 274 : 150 - 156
  • [4] Classification of motor imagery tasks for electrocorticogram based brain-computer interface
    Xu F.
    Zhou W.
    Zhen Y.
    Yuan Q.
    Zhou, W. (wdzhou@sdu.edu.cn), 1600, Springer Verlag (04): : 149 - 157
  • [5] Electroencephalography-Based Brain-Computer Interface Motor Imagery Classification
    Mohammadi, Ehsan
    Daneshmand, Parisa Ghaderi
    Khorzooghi, Seyyed Mohammad Sadegh Moosavi
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2022, 12 (01): : 40 - 47
  • [6] Classification of Motor Imagery Electrocorticogram Signals for Brain-Computer Interface
    Zheng, Wenfeng
    Xu, Fangzhou
    Shu, Minglei
    Zhang, Yingchun
    Yuan, Qi
    Lian, Jian
    Zheng, Yuanjie
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 530 - 533
  • [7] Signal classification algorithm in motor imagery based on asynchronous brain-computer interface
    Jiang, Yu
    He, Jingyan
    Li, Dandan
    Jin, Jing
    Shen, Yi
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019, : 1422 - 1426
  • [8] Classification of Motor Imagery for Ear-EEG based Brain-Computer Interface
    Kim, Yong-Jeong
    Kwak, No-Sang
    Lee, Seong-Whan
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 129 - 130
  • [9] Electroencephalogram-Based Motor Imagery Brain-Computer Interface Using Multivariate Iterative Filtering and Spatial Filtering
    Das, Kritiprasanna
    Pachori, Ram Bilas
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (03) : 1408 - 1418
  • [10] A Motor Imagery Based Brain-Computer Interface Speller
    Xia, Bin
    Yang, Jing
    Cheng, Conghui
    Xie, Hong
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT II, 2013, 7903 : 413 - 421