Design and Fabrication of Integrated Cryogenic Current Comparators

被引:0
|
作者
Maezawa, Masaaki [1 ]
Urano, Chiharu [1 ]
Maruyama, Michitaka [1 ]
Yamada, Takahiro [1 ]
Oe, Takehiko [1 ]
Hidaka, Mutsuo [2 ]
Satoh, Tetsuro [2 ]
Nagasawa, Shuichi [2 ]
Hinode, Kenji [2 ]
Kiryu, Shogo [3 ]
Kaneko, Nobu-hisa [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
[2] Int Superconduct Technol Ctr, Superconduct Res Lab, Tsukuba, Ibaraki 3058568, Japan
[3] Tokyo City Univ, Setagaya Ku, Tokyo 1588557, Japan
关键词
CCC; current comparators; current multiplier; QHR; standards; superconducting integrated circuits; METROLOGY; TRIANGLE;
D O I
10.1109/TASC.2010.2090320
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A cryogenic current comparator (CCC) is an instrument of great importance in electrical metrology, which provides a ratio of two currents with ultimate accuracy based on superconductivity. It is used for dc resistance calibration in many national metrology institutes. Conventional CCCs consist of multi-turn coils of wire windings, a multi-layered shield of superconductor foils and a separate SQUID sensor. This implementation results in a bulky device too massive to cool with a mechanical cryocooler, making a system inconvenient. A new implementation of CCC, an integrated CCC (ICCC) consisting of thin-film spiral coils, a thin-film superconducting shield and a SQUID sensor integrated on a single chip, enables a user-friendly system operated with a compact cryocooler. Prototype ICCC chips were designed and fabricated by using a superconducting Nb integrated circuit technology with chemical-mechanical polishing. The basic operation of the prototype ICCCs was confirmed by monitoring periodic flux-voltage characteristics of the SQUIDs.
引用
收藏
页码:728 / 733
页数:6
相关论文
共 50 条
  • [21] Application of conserved thermal-noise energy model to damped resonant behavior in cryogenic current comparators
    Williams, Jonathan M.
    Ireland, Jane
    Rungger, Ivan
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (10):
  • [22] Simplified calculus for the design of a cryogenic current comparator
    Sesé, J
    Bartolomé, E
    Camón, A
    Flokstra, J
    Rietveld, G
    Rillo, C
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2003, 52 (02) : 612 - 616
  • [23] Simplified calculus for the design of a Cryogenic Current Comparator
    Sesé, J
    Bartolomé, E
    Camón, A
    Flokstra, J
    Rietveld, G
    Rillo, C
    2002 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS, CONFERENCE DIGEST, 2002, : 336 - 337
  • [24] Cryogenic System for the Interferometric Cryogenic GravitationalWave Telescope, KAGRA - Design, Fabrication, and Performance Test
    Tokoku, C.
    Kimura, N.
    Koike, S.
    Kume, T.
    Sakakibara, Y.
    Suzuki, T.
    Yamamoto, K.
    Chen, D.
    Goto, S.
    Tanaka, M.
    Ioka, S.
    Nakamoto, K.
    Nezuka, H.
    Uchiyama, T.
    Ohashi, M.
    Kuroda, K.
    ADVANCES IN CRYOGENIC ENGINEERING, 2014, 1573 : 1254 - 1261
  • [25] CURRENT COMPARATORS WITH SUPERCONDUCTING SHIELDS
    GROHMANN, K
    HAHLBOHM, HD
    LUBBIG, H
    RAMIN, H
    CRYOGENICS, 1974, 14 (09) : 499 - 502
  • [26] DYNAMIC BEHAVIOUR OF CURRENT COMPARATORS
    RANDLE, KJ
    PHYSICS IN MEDICINE AND BIOLOGY, 1966, 11 (03): : 387 - &
  • [27] CAPACITIVE ERROR IN CURRENT COMPARATORS
    MILJANIC, PN
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1964, IM13 (04) : 210 - &
  • [28] Integrated Heat Exchanger Design for a Cryogenic Storage Tank
    Fesmire, J. E.
    Tomsik, T. M.
    Bonner, T.
    Oliveira, J. M.
    Conyers, H. J.
    Johnson, W. L.
    Notardonato, W. U.
    ADVANCES IN CRYOGENIC ENGINEERING, 2014, 1573 : 1365 - 1372
  • [29] Integrated design of cryogenic refrigeration systems for SMES systems
    Bowers, BJ
    Smith, JL
    ADVANCES IN CRYOGENIC ENGINEERING, VOL 43 PTS A AND B, 1998, 43 : 1125 - 1133
  • [30] INTEGRATED CIRCUITS - DESIGN PRINCIPLES AND FABRICATION
    PAUL, R
    ARCHIV DER ELEKTRISCHEN UND UBERTRAGUNG, 1965, 19 (12): : 646 - &