CoFe Layered Double Hydroxide Supported on Graphitic Carbon Nitrides: An Efficient and Durable Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions

被引:109
|
作者
Bhowmik, Tanmay [1 ]
Kundu, Manas Kumar [1 ]
Barman, Sudip [1 ]
机构
[1] HBNI, NISER, Sch Chem Sci, Via Jatni, Khurja 752050, Odisha, India
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 03期
关键词
Co0.4Fe0.6; LDH; g-carbon nitride; oxygen evolution reaction (OER); hydrogen evolution reaction (HER); overall water splitting; HIGHLY EFFICIENT; WATER OXIDATION; COBALT; NANOSHEETS; CATALYSTS; PH; PERFORMANCE; GRAPHENE; NICKEL; ELECTRODES;
D O I
10.1021/acsaem.7b00305
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Finding nonprecious metal based highly active and durable bifunctional electrocatalysts for overall water-splitting is essential for the development of various renewable energy storage and conversion technologies. Herein, we report the synthesis of cobalt iron layered double hydroxide (Co1-delta Fe delta LDH) and g-carbon nitride composite (Co1-delta Fe delta LDH/g-CNx) for alkaline water electrolysis. The thin Co1-delta Fe delta LDH nanosheets are successfully impregnated on graphitic carbon nitride surface by one pot co-precipitation method at ambient temperature. The optimal composite, Co0.4Fe0.6 LDH/g-CNx exhibited superior OER activity in 1 M KOH electrolyte with a small overpotential of 0.28 V for 10 mA cm(-2), low Tafel slope of 29 mV/dec, 100% faradic efficiency, and high TOF of 0.25 s(-1) which is superior to commercial (comm) IrO2. Furthermore, the Co0.4Fe0.6 LDH/g-CNx composite also exhibited remarkable HER activity in alkaline media and its HER activity is slightly lower than that of comm Pt/C at low overpotential but it outperforms Pt/C at high overpotential. The catalyst demonstrated its long-term durability and higher stability for HER and OER under alkaline environment. This Co0.4Fe0.6 LDH/g-CNx catalyst can serve as both cathode and anode for overall water-splitting and required the small potential of 1.61 V to achieve a current density of 10 mA cm(-2). The superior electrocatalytic activities of the Co0.4Fe0.6 LDH/g-CNx composite are due to the high electrochemical surface area (ECSA), easy access of abundant active sites, and easy mass transport owing to 2D sheet morphology of the composite.
引用
收藏
页码:1200 / +
页数:19
相关论文
共 50 条
  • [31] Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction
    Li, Meng
    Gu, Ying
    Chang, Yajun
    Gu, Xiaocong
    Tian, Jingqi
    Wu, Xiang
    Feng, Ligang
    CHEMICAL ENGINEERING JOURNAL, 2021, 425
  • [32] Pyrolyzed egg yolk as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions
    Shao, Zechao
    Zhang, Wen
    An, De
    Zhang, Genlei
    Wang, Yuxin
    RSC ADVANCES, 2015, 5 (118) : 97508 - 97511
  • [33] Cobalt/molybdenum carbide@N-doped carbon as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions
    Jiang, Jing
    Liu, Qiuxia
    Zeng, Chunmei
    Ai, Lunhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) : 16929 - 16935
  • [34] Iron-Based Metal-Organic Framework System as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions
    Gu, Minli
    Wang, Shi-Cheng
    Chen, Chen
    Xiong, Dengke
    Yi, Fei-Yan
    INORGANIC CHEMISTRY, 2020, 59 (09) : 6078 - 6086
  • [35] The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction
    Xue, Shixiang
    Wu, Pan
    Zhao, Liang
    Nan, Yanli
    Lei, Wanying
    PROGRESS IN CHEMISTRY, 2022, 34 (12) : 2686 - 2699
  • [36] Tetrafunctional electrocatalyst for oxygen reduction, oxygen evolution, hydrogen evolution, and carbon dioxide reduction reactions
    Ko, Ta-En
    Hosseini, Soraya
    Tseng, Chen-Ming
    Tsai, Jui-En
    Wang, Wei-Hsuan
    Li, Yuan-Yao
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2022, 136
  • [37] A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water
    Schoefberger, Wolfgang
    Faschinger, Felix
    Chattopadhyay, Samir
    Bhakta, Snehadri
    Mondal, Biswajit
    Elemans, Johannes A. A. W.
    Muellegger, Stefan
    Tebi, Stefano
    Koch, Reinhold
    Klappenberger, Florian
    Paszkiewicz, Mateusz
    Barth, Johannes V.
    Rauls, Eva
    Aldahhak, Hazem
    Schmidt, Wolf Gero
    Dey, Abhishek
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (07) : 2350 - 2355
  • [38] Carbon nanofiber-supported PdNi alloy nanoparticles as highly efficient bifunctional catalysts for hydrogen and oxygen evolution reactions
    Chen, Jiawei
    Chen, Jiadong
    Yu, Danni
    Zhang, Ming
    Zhu, Han
    Du, Mingliang
    ELECTROCHIMICA ACTA, 2017, 246 : 17 - 26
  • [39] NiFe Layered Double Hydroxide/FeOOH Heterostructure Nanosheets as an Efficient and Durable Bifunctional Electrocatalyst for Overall Seawater Splitting
    Jiang, Kun
    Liu, Wenjun
    Lai, Wei
    Wang, Menglian
    Li, Qian
    Wang, Zhaolong
    Yuan, Junjie
    Deng, Yilin
    Bao, Jian
    Ji, Hongbing
    INORGANIC CHEMISTRY, 2021, 60 (22) : 17371 - 17378
  • [40] Iron-Doped Ni-Al Layered Double Hydroxide as an Efficient Oxygen Evolution Reaction Electrocatalyst
    Zhou, Qi
    Huang, Guanru
    Feng, Chenchen
    CHEMNANOMAT, 2022, 8 (04)