Bayesian Hierarchical Modelling for Antimicrobial Resistance

被引:1
|
作者
Zhelyazkova, Maya [1 ]
Yordanova, Roumyana [2 ,3 ]
Mihaylov, Iliyan [1 ]
Kirov, Stefan [4 ]
Tsonev, Stefan [5 ]
Danko, David [6 ]
Vassilev, Dimitar [1 ]
机构
[1] Sofia Univ St Kliment Ohridski, Fac Math & Informat, 5 James Bourchier Blvd, Sofia 1164, Bulgaria
[2] Hokkaido Univ, Sapporo, Hokkaido, Japan
[3] Bulgarian Acad Sci, Inst Math & Informat, Acad Georgi Bonchev Str,Block 8, Sofia, Bulgaria
[4] Bristol Myers Squibb, 311 Pennington Rocky Hill Rd, Pennington, NJ USA
[5] AgroBioInst, 8 Dragan Tsankov Blvd, Sofia 1164, Bulgaria
[6] Weill Cornell Med Coll, New York, NY USA
关键词
Bayesian hierarchical spatial inference; Spatial correlations; Antimicrobial resistance; Metagenomics;
D O I
10.1007/978-3-030-96638-6_9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Antimicrobial resistance poses a serious health problem. Computational and statistical approaches have been developed for bacterial antimicrobial resistance discovery and classification. Next generation sequencing technologies allows us to analyze complex metagenomes and the presence of resistomes in them. In this work we apply Bayesian hierarchical spatial model to estimate the relative risk of antimicrobial resistance related taxa by using the available spatial information of the samples.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 50 条
  • [1] Bayesian modelling of antimicrobial resistance in enteric fever in understudied areas
    Bote, Lia
    Maes, Mailis
    LANCET GLOBAL HEALTH, 2024, 12 (03): : e346 - e347
  • [2] Bayesian estimation of the prevalence of antimicrobial resistance: a mathematical modelling study
    Howard, Alex
    Green, Peter L.
    Velluva, Anoop
    Gerada, Alessandro
    Hughes, David M.
    Brookfield, Charlotte
    Hope, William
    Buchan, Iain
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2024, 79 (09) : 2317 - 2326
  • [3] Bayesian Hierarchical Modelling for Uncertainty Quantification in Operational Thermal Resistance of LED Systems
    Dvorzak, Michaela
    Magnien, Julien
    Kleb, Ulrike
    Kraker, Elke
    Muecke, Manfred
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [4] Bayesian hierarchical modelling of rainfall extremes
    Lehmann, E. A.
    Phatak, A.
    Soltyk, S.
    Chia, J.
    Lau, R.
    Palmer, M.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 2806 - 2812
  • [5] Bayesian hierarchical modelling of size spectra
    Wesner, Jeff S.
    Pomeranz, Justin P. F.
    Junker, James R.
    Gjoni, Vojsava
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (05): : 856 - 867
  • [6] Hierarchical Bayesian Modelling of Visual Attention
    Xu, Jinhua
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS (VISAPP), VOL 1, 2014, : 347 - 358
  • [7] Bayesian hierarchical modelling for process optimisation
    Ouyang, Linhan
    Park, Chanseok
    Ma, Yan
    Ma, Yizhong
    Wang, Min
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2021, 59 (15) : 4649 - 4669
  • [8] Hierarchical dynamic modelling for individualized Bayesian forecasting
    Yanchenko, Anna K.
    Deng, Di Daniel
    Li, Jinglan
    Cron, Andrew J.
    West, Mike
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (01) : 144 - 164
  • [9] Bayesian Hierarchical Modelling for Tailoring Metric Thresholds
    Ernst, Neil A.
    2018 IEEE/ACM 15TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES (MSR), 2018, : 587 - 591
  • [10] Bayesian hierarchical modelling of North Atlantic windiness
    Vanem, E.
    Breivik, O. N.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2013, 13 (03) : 545 - 557