Bayesian hierarchical modelling for process optimisation

被引:7
|
作者
Ouyang, Linhan [1 ]
Park, Chanseok [2 ]
Ma, Yan [1 ]
Ma, Yizhong [1 ]
Wang, Min [3 ]
机构
[1] Nanjing Univ Sci & Technol, Dept Management Sci & Engn, Nanjing, Peoples R China
[2] Pusan Natl Univ, Dept Ind Engn, Busan, South Korea
[3] Univ Texas San Antonio, Dept Management Sci & Stat, San Antonio, TX 78249 USA
基金
中国国家自然科学基金; 中国博士后科学基金; 新加坡国家研究基金会;
关键词
Response surface methodology; Bayesian hierarchical modelling; model selection and estimation; SUR models; process optimisation; MULTIRESPONSE SURFACE OPTIMIZATION; ROBUST PARAMETER DESIGN; RESPONSES;
D O I
10.1080/00207543.2020.1769873
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Many industrial process optimisation methods rely on empirical models that relate output responses to a set of design variables. One of the most crucial problems in process optimisation is how to efficiently implement model selection and model estimation. This paper presents a Bayesian hierarchical modelling approach to process optimisation based on the seemingly unrelated regression (SUR) models. This approach can estimate a set of predictors to be included in a model based on a Bayesian hierarchical procedure (i.e. model selection) and then give model prediction based on a Bayesian SUR model (i.e. model estimation). Meanwhile, a two-stage optimisation strategy considering practitioners' preference information is proposed in process optimisation, which initially finds a set of non-dominated input settings and then determines the best one based on the similarity to an ideal solution method. The performance and effectiveness of the proposed method are illustrated with both simulation studies and a case study. The comparison results demonstrate that the proposed method can be a good alternative to existing process optimisation methods.
引用
收藏
页码:4649 / 4669
页数:21
相关论文
共 50 条
  • [1] Bayesian hierarchical modelling of rainfall extremes
    Lehmann, E. A.
    Phatak, A.
    Soltyk, S.
    Chia, J.
    Lau, R.
    Palmer, M.
    [J]. 20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 2806 - 2812
  • [2] Bayesian hierarchical modelling of size spectra
    Wesner, Jeff S.
    Pomeranz, Justin P. F.
    Junker, James R.
    Gjoni, Vojsava
    [J]. METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (05): : 856 - 867
  • [3] Hierarchical Bayesian Modelling of Visual Attention
    Xu, Jinhua
    [J]. PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS (VISAPP), VOL 1, 2014, : 347 - 358
  • [4] Bayesian Hierarchical Modelling for Antimicrobial Resistance
    Zhelyazkova, Maya
    Yordanova, Roumyana
    Mihaylov, Iliyan
    Kirov, Stefan
    Tsonev, Stefan
    Danko, David
    Vassilev, Dimitar
    [J]. CONTEMPORARY METHODS IN BIOINFORMATICS AND BIOMEDICINE AND THEIR APPLICATIONS, 2022, 374 : 79 - 87
  • [5] Hierarchical dynamic modelling for individualized Bayesian forecasting
    Yanchenko, Anna K.
    Deng, Di Daniel
    Li, Jinglan
    Cron, Andrew J.
    West, Mike
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (01) : 144 - 164
  • [6] Bayesian Hierarchical Modelling for Tailoring Metric Thresholds
    Ernst, Neil A.
    [J]. 2018 IEEE/ACM 15TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES (MSR), 2018, : 587 - 591
  • [7] Bayesian hierarchical modelling of North Atlantic windiness
    Vanem, E.
    Breivik, O. N.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2013, 13 (03) : 545 - 557
  • [8] Modelling Unexpected Failures with a Hierarchical Bayesian Model
    Zeng, Zhiguo
    Zio, Enrico
    [J]. 2017 2ND INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY (ICSRS), 2017, : 135 - 139
  • [9] Modelling and optimisation of hull erection process
    Zhang, Yongquan
    Xu, Kelin
    Yu, Jinwei
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2011, 49 (13) : 4157 - 4174
  • [10] A Bayesian hierarchical modelling for hydropower risk assessment
    Kalinina, A.
    Spada, M.
    Burgherr, P.
    Marelli, S.
    Sudret, B.
    [J]. RISK, RELIABILITY AND SAFETY: INNOVATING THEORY AND PRACTICE, 2017, : 412 - 418