Flow stabilization by subsurface phonons

被引:44
|
作者
Hussein, M. I. [1 ]
Biringen, S. [1 ]
Bilal, O. R. [1 ]
Kucala, A. [1 ]
机构
[1] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
fluid-structure interaction; flow instability; flow control; phononics; phononic materials; phonon band structure; BOUNDARY-LAYER INSTABILITY; SPATIAL SIMULATION; HYDRODYNAMIC STABILITY; COMPLIANT SURFACES; CHANNEL FLOW; TRANSITION; LATTICES; WAVES;
D O I
10.1098/rspa.2014.0928
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The interaction between a fluid and a solid surface in relative motion represents a dynamical process that is central to the problem of laminar-to-turbulent transition (and consequent drag increase) for air, sea and land vehicles, as well as long-range pipelines. This problem may in principle be alleviated via a control stimulus designed to impede the generation and growth of instabilities inherent in the flow. Here, we show that phonon motion underneath a surface may be tuned to passively generate a spatio-temporal elastic deformation profile at the surface that counters these instabilities. We theoretically demonstrate this phenomenon and the underlying mechanism of frequency-dependent destructive interference of the unstable flow waves. The converse process of flow destabilization is illustrated as well. This approach provides a condensed-matter physics treatment to fluid-structure interaction and a new paradigm for flow control.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Poiseuille flow of phonons in solid hydrogen
    Zholonko, N. N.
    PHYSICS OF THE SOLID STATE, 2006, 48 (09) : 1678 - 1680
  • [12] Subsurface cation vacancy stabilization of the magnetite (001) surface
    Bliem, R.
    McDermott, E.
    Ferstl, P.
    Setvin, M.
    Gamba, O.
    Pavelec, J.
    Schneider, M. A.
    Schmid, M.
    Diebold, U.
    Blaha, P.
    Hammer, L.
    Parkinson, G. S.
    SCIENCE, 2014, 346 (6214) : 1215 - 1218
  • [13] Ecohydrological flow networks in the subsurface
    Band, L. E.
    McDonnell, J. J.
    Duncan, J. M.
    Barros, A.
    Bejan, A.
    Burt, T.
    Dietrich, W. E.
    Emanuel, R. E.
    Hwang, T.
    Katul, G.
    Kim, Y.
    McGlynn, B.
    Miles, B.
    Porporato, A.
    Scaife, C.
    Troch, P. A.
    ECOHYDROLOGY, 2014, 7 (04) : 1073 - 1078
  • [14] Subsurface flow component for AnnAGNPS
    Yuan, Y
    Bingner, RL
    Theurer, FD
    APPLIED ENGINEERING IN AGRICULTURE, 2006, 22 (02) : 231 - 241
  • [15] Subsurface air flow on Mars
    Norbert Schörghofer
    Nature Physics, 2014, 10 : 14 - 15
  • [16] Subsurface flow and channel erosion
    Devkota, LP
    Tsujimoto, T
    Takagi, F
    WATER RESOURCES ENGINEERING 98, VOLS 1 AND 2, 1998, : 1487 - 1492
  • [17] SHALLOW SUBSURFACE FLOW MODEL
    RAWLS, WJ
    ASMUSSEN, LE
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1978, 59 (04): : 282 - 282
  • [18] Subsurface flow component for AnnAGNPS
    USDA-ARS National Sedimentation Laboratory, 598 McElroy Dr., Oxford, MS 38655, United States
    不详
    Appl Eng Agric, 2006, 2 (231-241):
  • [19] Subsurface flow velocities in a hillslope with lateral preferential flow
    Anderson, A. E.
    Weiler, M.
    Alila, Y.
    Hudson, R. O.
    WATER RESOURCES RESEARCH, 2009, 45
  • [20] A NOTE ON SURFACE PHONONS AND RECONSTRUCTION OF W (001) - THE ROLE OF SURFACE-SUBSURFACE INTERACTIONS
    PICK, S
    TOMASEK, M
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1985, 35 (02) : 183 - 186