Thermalized connectivity networks of jammed packings

被引:3
|
作者
Buss, Clemens [1 ,2 ]
Heussinger, Claus [2 ]
Hallatschek, Oskar [3 ,4 ]
机构
[1] Max Planck Inst Dynam & Self Org, Biophys & Evolutionary Dynam Grp, D-37077 Gottingen, Germany
[2] Univ Gottingen, Inst Theoret Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
[3] Univ Calif Berkeley, Dept Phys, Biophys & Evolutionary Dynam Grp, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
TEMPERATURE; STRESS;
D O I
10.1039/c6sm00864j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Jammed packings of repulsive elastic spheres have emerged as a rich model system within which the elastic properties of disordered glassy materials may be elucidated. Most of the work on these packings has focused on the case of vanishing temperature. Here, we explore the elastic properties of the associated connectivity network for finite temperatures, ignoring the breaking of bonds and the formation of new ones. Using extensive Monte Carlo simulations, we find that, as the temperature is increased, the resulting spring network shrinks and exhibits a rapidly softening bulk modulus via a cusp. Moreover, the shear modulus stiffens in a fixed volume ensemble but not in a fixed pressure ensemble. These counter-intuitive behaviors may be understood from the characteristic spectrum of soft modes near isostaticity, which resembles the spectrum of a rod near its buckling instability. Our results suggest a generic mechanism for negative thermal expansion coefficients in marginal solids. We discuss some consequences of bond breaking and an apparent analogy between thermalization and shear.
引用
收藏
页码:7682 / 7687
页数:6
相关论文
共 50 条
  • [41] Evolution of the force distributions in jammed packings of soft particles
    Boberski, Jens
    Shaebani, M. Reza
    Wolf, Dietrich E.
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [42] Comparison of shear and compression jammed packings of frictional disks
    Fansheng Xiong
    Philip Wang
    Abram H. Clark
    Thibault Bertrand
    Nicholas T. Ouellette
    Mark D. Shattuck
    Corey S. O’Hern
    Granular Matter, 2019, 21
  • [43] A Geometric-Structure Theory for Maximally Random Jammed Packings
    Tian, Jianxiang
    Xu, Yaopengxiao
    Jiao, Yang
    Torquato, Salvatore
    SCIENTIFIC REPORTS, 2015, 5
  • [44] Hyperuniform jammed sphere packings have anomalous material properties
    Dale, Jack R.
    Sartor, James D.
    Dennis, R. Cameron
    Corwin, Eric I.
    PHYSICAL REVIEW E, 2022, 106 (02)
  • [45] Tuning jammed frictionless disk packings from isostatic to hyperstatic
    Department of Physics, Yale University, New Haven, CT 06520-8120, United States
    不详
    不详
    Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 1
  • [46] Densest versus jammed packings of bent-core trimers
    Griffith, Austin D.
    Hoy, Robert S.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [47] A Geometric-Structure Theory for Maximally Random Jammed Packings
    Jianxiang Tian
    Yaopengxiao Xu
    Yang Jiao
    Salvatore Torquato
    Scientific Reports, 5
  • [48] Pressure model and scaling laws in jammed bidisperse granular packings
    Petit, Juan C.
    Sperl, Matthias
    Granular Matter, 27 (01):
  • [49] Stress anisotropy in shear-jammed packings of frictionless disks
    Chen, Sheng
    Bertrand, Thibault
    Jin, Weiwei
    Shattuck, Mark D.
    O'Hern, Corey S.
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [50] Structure of jammed ellipse packings with a wide range of aspect ratios
    Rocks, Sebastian
    Hoy, Robert S.
    SOFT MATTER, 2023, 19 (30) : 5701 - 5710