Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes

被引:51
|
作者
Grujicic, M [1 ]
Cao, G
Roy, WN
机构
[1] Clemson Univ, Dept Mech Engn, Program Mat Sci & Engn, Clemson, SC 29634 USA
[2] USA, Res Lab, WMRD AMSRL WM MD, Aberdeen Proving Ground, MD 21005 USA
关键词
D O I
10.1007/s10853-005-1215-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular dynamics based heat-flux auto-correlation functions are combined with a Green-Kubo relation from the linear response theory to quantify the lattice contribution to thermal conductivity of single-walled carbon nanotubes with three different chiralities (screw symmetries). The interactions between carbon atoms within a nanotube are analyzed using the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential. The results obtained show that, due to a long-term exponential-decay character of the heat-flux auto-correlation functions, converging values of the lattice thermal conductivities can be obtained using computational cells considerably smaller than the phonon mean free path. However, to obtain accurate values of the thermal conductivity, a spectral Green-Kubo relation and a phonon-based extrapolation function are found to be instrumental for quantifying the thermal conductivity contribution of the long-wavelength phonons not allowed in the computational cells of a finite size. The results further show that chirality of the carbon nanotubes can affect the lattice contribution to the thermal conductivity by as much as 20%. Also, the simulation results of the effect of temperature on the thermal conductivity clearly show a competition between an increase in the number of phonons and an increased probability for phonon scattering at higher temperatures. (C) 2005 Springer Science + Business Media, Inc.
引用
收藏
页码:1943 / 1952
页数:10
相关论文
共 50 条
  • [1] Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes
    M. Grujicic
    G. Cao
    Walter N. Roy
    Journal of Materials Science, 2005, 40 : 1943 - 1952
  • [2] Lattice thermal conductivity of individual single-walled carbon nanotubes
    Yan, Huan
    Zhang, Xing
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2007, 28 (05): : 811 - 813
  • [3] Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes
    Grujicic, M
    Cao, G
    Gersten, B
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 107 (02): : 204 - 216
  • [4] Thermal conductivity of single-walled carbon nanotubes
    Savin, Alexander V.
    Hu, Bambi
    Kivshar, Yuri S.
    PHYSICAL REVIEW B, 2009, 80 (19)
  • [5] Thermal conductivity of single-walled carbon nanotubes
    Hone, J
    Whitney, M
    Piskoti, C
    Zettl, A
    PHYSICAL REVIEW B, 1999, 59 (04): : R2514 - R2516
  • [6] Thermal conductivity of single-walled carbon nanotubes
    Hone, J
    Whitney, M
    Zettl, A
    SYNTHETIC METALS, 1999, 103 (1-3) : 2498 - 2499
  • [7] Thermal conductivity of single-walled carbon nanotubes
    Hone, J.
    Whitney, M.
    Zettl, A.
    Synthetic Metals, 1999, 103 (1 -3 pt 3): : 2498 - 2499
  • [8] Conductivity of single-walled carbon nanotubes
    A. V. Gets
    V. P. Krainov
    Journal of Experimental and Theoretical Physics, 2016, 123 : 1084 - 1089
  • [9] Conductivity of Single-Walled Carbon Nanotubes
    Gets, A. V.
    Krainov, V. P.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2016, 123 (06) : 1084 - 1089
  • [10] Dependencies of the thermal conductivity of individual single-walled carbon nanotubes
    Lee, J. W.
    Meade, A. J.
    Barrera, E. V.
    Templeton, J. A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2010, 224 (1-2) : 41 - 54