WEED MAPPING USING VERY HIGH RESOLUTION SATELLITE IMAGERY AND FULLY CONVOLUTIONAL NEURAL NETWORK

被引:0
|
作者
Rist, Yannik [1 ]
Shendryk, Iurii [1 ]
Diakogiannis, Foivos [2 ]
Levick, Shaun [3 ]
机构
[1] CSIRO, Agr & Food, Brisbane, Qld 4067, Australia
[2] CSIRO, Data61, Perth, WA 6104, Australia
[3] CSIRO, Land & Water, Darwin, NT 0828, Australia
关键词
Gamba grass; weed; deep learning; CNN; semantic segmentation; Pleiades; remote sensing; CLASSIFICATION; GRASS;
D O I
10.1109/igarss.2019.8900442
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
An introduced pasture grass (Andropogon gayanus - Gamba grass) is spreading through the savannah of northern Australia, with detrimental ecosystem consequences that include increased fire severity. In order to monitor the spread and impact of Gamba grass, a scalable solution for mapping this invasive weed over large areas is required. Recent developments in convolutional neural networks designed for semantic segmentation have proven useful for distinguishing vegetation in an automated manner. We construct training data for supervised learning from an airborne LiDAR-derived point cloud using existing techniques and tune the hyper-parameters of a ResUNet-a to produce a viable solution for detecting Gamba grass in very high resolution satellite imagery.
引用
收藏
页码:9784 / 9787
页数:4
相关论文
共 50 条
  • [31] Coastal Marine Debris Detection and Density Mapping With Very High Resolution Satellite Imagery
    Sasaki, Kenichi
    Sekine, Tatsuyuki
    Burtz, Louis-Jerome
    Emery, William J.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6391 - 6401
  • [32] Hedgerow object detection in very high-resolution satellite images using convolutional neural networks
    Ahlswede, Steve
    Asam, Sarah
    Roeder, Achim
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (01)
  • [33] Urban Tree Canopy Mapping Based on Double-Branch Convolutional Neural Network and Multi-Temporal High Spatial Resolution Satellite Imagery
    Chen, Shuaiqiang
    Chen, Meng
    Zhao, Bingyu
    Mao, Ting
    Wu, Jianjun
    Bao, Wenxuan
    REMOTE SENSING, 2023, 15 (03)
  • [34] The Implementation of a Convolutional Neural Network for the Detection of the Transmission Towers Using Satellite Imagery
    Michalski, Pawel
    Ruszczak, Bogdan
    Navarro Lorente, Pedro Javier
    INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2019, PT II, 2020, 1051 : 287 - 299
  • [35] Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery
    Huang, Bo
    Zhao, Bei
    Song, Yimeng
    REMOTE SENSING OF ENVIRONMENT, 2018, 214 : 73 - 86
  • [36] Edge-Reinforced Convolutional Neural Network for Road Detection in Very-High-Resolution Remote Sensing Imagery
    Lu, Xiaoyan
    Zhong, Yanfei
    Zheng, Zhuo
    Zhao, Ji
    Zhang, Liangpei
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2020, 86 (03): : 153 - 160
  • [37] BATHYMETRY MAPPING USING VERY HIGH RESOLUTION SATELLITE MULTISPECTRAL IMAGERY IN SHALLOW COASTAL WATERS OF PROTECTED ECOSYSTEMS
    Marques, F.
    Eugenio, F.
    Alfaro, M.
    Marcello, J.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8234 - 8237
  • [38] Fractal characteristics of Very High Resolution satellite imagery
    Zeng Yu
    Mang Jixian
    Li Haitao
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 389 - 392
  • [39] Fully Convolutional Network for Automatic Road Extraction from Satellite Imagery
    Buslaev, Alexander
    Seferbekov, Selim
    Iglovikov, Vladimir
    Shvets, Alexey
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 197 - 200
  • [40] A Very High Resolution Satellite Imagery Classification Algorithm
    Shedlovska, Y. I.
    Hnatushenko, V. V.
    2018 IEEE 38TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2018, : 654 - 657