The ICECool Fundamentals Effort on Evaporative Cooling of Microelectronics

被引:36
|
作者
Bar-Cohen, Avram [1 ]
Asheghi, Mehdi [2 ]
Chainer, Timothy J. [3 ]
Garimella, Suresh, V [4 ]
Goodson, Kenneth [2 ]
Gorle, Catherine [5 ]
Mandel, Raphael [6 ]
Maurer, Joseph J. [7 ]
Ohadi, Michael [6 ]
Palko, James W. [8 ]
Parida, Pritish R. [3 ]
Peles, Yoav [9 ]
Plawsky, Joel L. [10 ]
Schultz, Mark D. [3 ]
Weibel, Justin A. [11 ]
Joshi, Yogendra [12 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] IBM Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[4] Purdue Univ, Dept Mech Engn, W Lafayette, IN 47907 USA
[5] Stanford Univ, Dept Civil Engn, Stanford, CA 94305 USA
[6] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
[7] MBO Partners, Arlington, VA 22202 USA
[8] UC Merced, Dept Mech Engn, Merced, CA 95343 USA
[9] Univ Cent Florida, Dept Mech Engn, Orlando, FL 32816 USA
[10] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA
[11] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[12] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Heating systems; Substrates; Cooling; Heat sinks; Heat transfer; Pins; Thermal management; Chip cooling; evaporative cooling; thermal management; two-phase thermal modeling; CONVECTIVE HEAT-TRANSFER; SINK ARRAY; FLOW; MICROCHANNEL; PPF;
D O I
10.1109/TCPMT.2021.3111114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Intrachip Enhanced Cooling Fundamentals (ICECool Fun) effort was launched by the Defense Advanced Research Projects Agency (DARPA) under the leadership of Dr. Avram Bar-Cohen during 2012-2015 to target an order of magnitude improvement in chip level and hot spot heat fluxes, compared to the then state-of-the-art (SOA). Evaporative cooling technologies to achieve potential targets of 1 kW/cm(2) at the chip level and 5 kW/cm(2) at the hot spot level were targeted. A key goal was to improve fundamental understanding of the evaporative cooling physics at the relevant scales, and a numerical modeling capability to enable the co-design of such solutions in emerging computing and communications systems. A summary of the five projects pursued under this effort is provided, including the key accomplishments and developed capabilities.
引用
收藏
页码:1546 / 1564
页数:19
相关论文
共 50 条
  • [31] Evaporative Cooling - Review of Theoretical Fundamentals and Experimental Studies. Part 2: Extended Primary Equation.
    Reschke, G.
    Stach, H.
    Luft- und Kaltetechnik Karlsruhe, 1988, 24 (02): : 100 - 103
  • [32] Evaporative cooling and the Mpemba effect
    Vynnycky, M.
    Mitchell, S. L.
    HEAT AND MASS TRANSFER, 2010, 46 (8-9) : 881 - 890
  • [33] EVAPORATIVE COOLING OF A BODY OF WATER
    DAKE, JMK
    WATER RESOURCES RESEARCH, 1972, 8 (04) : 1087 - &
  • [34] EVAPORATIVE COOLING FOR POWER SEMICONDUCTORS
    HEINEMEYER, P
    LUKANZ, W
    STEINWEG, M
    OSWALD, D
    1978, 51 (01): : 30 - 39
  • [35] Evaporative cooling of atomic chromium
    Weinstein, JD
    deCarvalho, R
    Hancox, CI
    Doyle, JM
    PHYSICAL REVIEW A, 2002, 65 (02): : 4
  • [36] Cooling off with an evaporative roof
    Ind Maint Plant Oper, 9 (12):
  • [37] VACUUM EQUIPMENT FOR EVAPORATIVE COOLING
    MALPAS, EW
    PROCESS BIOCHEMISTRY, 1972, 7 (10) : 15 - +
  • [38] EVAPORATIVE COOLING OF BLANCHED VEGETABLES
    COFFELT, RJ
    WINTER, FH
    JOURNAL OF FOOD SCIENCE, 1973, 38 (01) : 89 - 91
  • [39] Evaporative cooling in microfluidic channels
    Maltezos, George
    Rajagopal, Aditya
    Scherer, Axel
    APPLIED PHYSICS LETTERS, 2006, 89 (07)
  • [40] Evaporative cooling and the Mpemba effect
    M. Vynnycky
    S. L. Mitchell
    Heat and Mass Transfer, 2010, 46 : 881 - 890