A fully-integrated 16-channel EEG readout front-end for neural recording applications

被引:21
|
作者
Nasserian, Mahshid [1 ]
Peiravi, Ali [1 ]
Moradi, Farshad [2 ]
机构
[1] Ferdowsi Univ Mashhad, Sch Engn, Dept Elect Engn, Mashhad 9177948947, Iran
[2] Aarhus Univ, Integrated Circuits & Elect Lab, Dept Engn, DK-41893344 Aarhus, Denmark
关键词
Dry electrodes; Electroencephalography (EEG); Chopper modulation; Adaptive DC servo loop (DSL); ACQUISITION SOC; MU-W; AMPLIFIER; PROCESSOR; SYSTEM;
D O I
10.1016/j.aeue.2018.06.045
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a power-efficient, low noise analog front-end (AFE) is presented which employs the chopper stabilized technique. A new instrumentation amplifier structure leads to a high input impedance beyond 10 GO at the frequency of 10 Hz. Furthermore, an adaptive DC servo loop (DSL) is proposed which is conditionally activated to minimize the negative impact of this block on the noise performance of the AFE. The integrated input-referred noise of the amplifier is 1.33 Vrms and 1.19 Vrms over the 0.5 Hz-100 Hz frequency range when the DSL is enabled or disabled, respectively. Also, considering different aspects of the AFE, a new comprehensive figure of merit (FOM) is introduced to compare different state-of-the-art biopotential amplifiers. The power consumption and bandwidth of the designed 16-channel AFE are 15.81 W and 235 Hz, respectively. The circuit is realized in the 180 nm standard complementary metal oxide semiconductor technology using a 1 V power supply.
引用
收藏
页码:109 / 121
页数:13
相关论文
共 50 条
  • [41] A fully integrated, low noise and low power BiCMOS front-end readout system for capacitive detectors
    Guo, CC
    Schmitt, P
    Deptuch, G
    Hu, YY
    ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING, 2001, 28 (03) : 211 - 223
  • [42] Characterization and QC practice of 16-channel ADC ASIC at cryogenic temperature for Liquid Argon TPC front-end readout electronics system in DUNE experiment
    Lopriore, E.
    Braga, D.
    Chen, H.
    Christian, D.
    Dabrowski, M.
    Deptuch, G.
    Fried, J.
    Furic, I
    Gao, S.
    Grace, C. R.
    Hoff, J.
    Holm, S.
    Lin, C-J
    Miryala, S.
    Prakash, T.
    Tang, S.
    Vernon, E.
    Zhang, J.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (06):
  • [43] A Fully Integrated, Low Noise and Low Power BiCMOS Front-end Readout System for Capacitive Detectors
    Chaoying-Christine Guo
    Philippe Schmitt
    Grzegorz Deptuch
    Yongcai-Yann Hu
    Analog Integrated Circuits and Signal Processing, 2001, 28 : 211 - 223
  • [44] PESIC: An integrated front-end for PET applications
    Herrero, V.
    Gadea, R.
    Colom, R.
    Sebastia, A.
    Monzo, J. M.
    Esteve, R.
    Lerche, Ch. W.
    Benlloch, J. M.
    2007 15TH IEEE-NPSS REAL-TIME CONFERENCE, VOLS 1 AND 2, 2007, : 347 - +
  • [45] PESIC:: An integrated front-end for PET applications
    Herrero-Bosch, Vicente
    Colom, Ricardo J.
    Gadea, Rafael
    Espinosa, Jaume
    Monzo, Jose M.
    Esteve, Raul
    Sebastia, Angel
    Lerche, Christoph W.
    Benlloch, Jose M.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2008, 55 (01) : 27 - 33
  • [46] Sub-μW Front-End Low Noise Amplifier for Neural Recording Applications
    Della Sala, Riccardo
    Centurelli, Francesco
    Monsurro, Pietro
    Scotti, Giuseppe
    PRIME 2022: 17TH INTERNATIONAL CONFERENCE ON PHD RESEARCH IN MICROELECTRONICS AND ELECTRONICS, 2022, : 229 - 232
  • [47] Fully integrated high-voltage front-end interface for ultrasonic sensing applications
    Chebli, Robert
    Sawan, Mohamad
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (01) : 179 - 190
  • [48] A low power front-end architecture for SiPM readout with integrated ADC and multiplexed readout
    Sacco, I.
    Fischer, P.
    Ritzert, M.
    Peric, I.
    JOURNAL OF INSTRUMENTATION, 2013, 8
  • [49] A Neural Recording System with 16 Reconfigurable Front-end Channels and Memristive Processing/Memory Unit
    Jiang, Xiongfei
    Sbandati, Caterina
    Reynolds, Grahame
    Wang, Chaohan
    Papavassiliou, Christos
    Serb, Alexander
    Prodromakis, Themis
    Wang, Shiwei
    2023 21ST IEEE INTERREGIONAL NEWCAS CONFERENCE, NEWCAS, 2023,
  • [50] A 2.2 μW analog front-end for multichannel neural recording
    Luis Valtierra, Jose
    Delgado-Restituto, Manuel
    Rodriguez-Vazquez, Angel
    2017 IEEE 8TH LATIN AMERICAN SYMPOSIUM ON CIRCUITS & SYSTEMS (LASCAS), 2017,