Defects in Layered van der Waals Heterostructures: Implications for Thermoelectrics

被引:3
|
作者
Gannon, Renae N. [1 ,2 ]
Hamann, Danielle M. [1 ,2 ,3 ]
Ditto, Jeffrey [1 ,2 ]
Mitchson, Gavin [1 ,2 ,4 ]
Bauers, Sage R. [1 ,2 ,5 ]
Merrill, Devin R. [1 ,2 ]
Medlin, Douglas L. [6 ]
Johnson, David C. [1 ,2 ]
机构
[1] Univ Oregon, Dept Chem, Eugene, OR 97403 USA
[2] Univ Oregon, Inst Mat Sci, Eugene, OR 97403 USA
[3] ON Semicond, 82 Running Hill Rd, South Portland, ME 04106 USA
[4] Thermo Fisher Sci, 5350 NE Dawson Creek Dr, Hillsboro, OR 97124 USA
[5] Natl Renewable Energy Lab, Golden, CO 80401 USA
[6] Sandia Natl Labs, Livermore, CA 94550 USA
基金
美国国家科学基金会;
关键词
nanomaterials; defects; materials; microscopy; deposition; thickness; PHASE-TRANSITION; DISCONNECTIONS; DISLOCATIONS; GRAPHENE; STEPS; SNS;
D O I
10.1021/acsanm.1c01272
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Layered van der Waals heterostructures provide extraordinary opportunities for applications such as thermoelectrics and allow for tunability of optical and electronic properties. The performance of devices made from these heterostructures will depend on their properties, which are sensitive to the nanoarchitecture (constituent layer thicknesses, layer sequence, etc.). However, performance will also be impacted by defects, which will vary in concentration and identity with the nanoarchitecture and preparation conditions. Here, we identify several types of defects and propose mechanisms for their formation, focusing on compounds in the ([SnSe](1+delta))(m)(TiSe2)(n) system prepared using the modulated elemental reactants method. The defects were observed by atomic resolution high-angle annular dark-field scanning transmission electron microscopy and can be broadly categorized into those that form domain boundaries as a result of rotational disorder from the self-assembly process and those that are layer-thickness-related and result from local or global deviations in the amount of material deposited. Defect type and density were found to depend on the nanoarchitecture of the heterostructure. Categorizing the defects provides insights into defect formation in these van der Waals layered heterostructures and suggests strategies for controlling their concentrations. Strategies for controlling defect type and concentration are proposed, which would have implications for transport properties for applications in thermoelectrics.
引用
收藏
页码:7943 / 7953
页数:11
相关论文
共 50 条
  • [31] Multiferroicity in atomic van der Waals heterostructures
    Gong, Cheng
    Kim, Eun Mi
    Wang, Yuan
    Lee, Geunsik
    Zhang, Xiang
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [32] Quantum microscopy with van der Waals heterostructures
    Healey, A. J.
    Scholten, S. C.
    Yang, T.
    Scott, J. A.
    Abrahams, G. J.
    Robertson, I. O.
    Hou, X. F.
    Guo, Y. F.
    Rahman, S.
    Lu, Y.
    Kianinia, M.
    Aharonovich, I
    Tetienne, J-P
    NATURE PHYSICS, 2023, 19 (01) : 87 - +
  • [33] Fabrication and applications of van der Waals heterostructures
    Qi, Junlei
    Wu, Zongxiao
    Wang, Wenbin
    Bao, Kai
    Wang, Lingzhi
    Wu, Jingkun
    Ke, Chengxuan
    Xu, Yue
    He, Qiyuan
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (02)
  • [34] The Coulomb interaction in van der Waals heterostructures
    Le Huang
    MianZeng Zhong
    HuiXiong Deng
    Bo Li
    ZhongMing Wei
    JingBo Li
    SuHuai Wei
    Science China(Physics,Mechanics & Astronomy), 2019, Mechanics & Astronomy)2019 (03) : 106 - 111
  • [35] Interfaces and heterostructures of van der Waals materials
    Asensio, Maria C.
    Batzill, Matthias
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (49)
  • [36] Ultrafast dynamics in van der Waals heterostructures
    Chenhao Jin
    Eric Yue Ma
    Ouri Karni
    Emma C. Regan
    Feng Wang
    Tony F. Heinz
    Nature Nanotechnology, 2018, 13 : 994 - 1003
  • [37] Picosecond photoresponse in van der Waals heterostructures
    Massicotte M.
    Schmidt P.
    Vialla F.
    Schädler K.G.
    Reserbat-Plantey A.
    Watanabe K.
    Taniguchi T.
    Tielrooij K.J.
    Koppens F.H.L.
    Nature Nanotechnology, 2016, 11 (1) : 42 - 46
  • [38] Spin-Orbit Torque in Van der Waals-Layered Materials and Heterostructures
    Tang, Wei
    Liu, Haoliang
    Li, Zhe
    Pan, Anlian
    Zeng, Yu-Jia
    ADVANCED SCIENCE, 2021, 8 (18)
  • [39] Hyperdislocations in van der Waals Layered Materials
    Ly, Thuc Hue
    Zhao, Jiong
    Keum, Dong Hoon
    Deng, Qingming
    Yu, Zhiyang
    Lee, Young Hee
    NANO LETTERS, 2016, 16 (12) : 7807 - 7813
  • [40] Superconductivity in a van der Waals layered quasicrystal
    Tokumoto Y.
    Hamano K.
    Nakagawa S.
    Kamimura Y.
    Suzuki S.
    Tamura R.
    Edagawa K.
    Nature Communications, 15 (1)