A Para-Differential Renormalization Technique for Nonlinear Dispersive Equations

被引:45
|
作者
Herr, Sebastian [1 ]
Ionescu, Alexandru D. [2 ]
Kenig, Carlos E. [3 ]
Koch, Herbert [1 ]
机构
[1] Univ Bonn, Math Inst, D-53115 Bonn, Germany
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Dispersion generalized Benjamin-Ono equation; Frequency-dependent renormalization; Global well-posedness; L-2 initial data; GLOBAL WELL-POSEDNESS; BENJAMIN-ONO-EQUATION; KDV;
D O I
10.1080/03605302.2010.487232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For alpha. epsilon (1, 2) we prove that the initial-value problem Sigma partial derivative(t)u + D-alpha partial derivative(x)u + partial derivative(x) (u(2)/2) = 0 on R-x x R-t; u(0) = phi, is globally well-posed in the space of real-valued L-2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.
引用
收藏
页码:1827 / 1875
页数:49
相关论文
共 50 条
  • [31] Asymptotics for critical nonlinear dispersive equations
    Merle, Frank
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL I, 2014, : 475 - 498
  • [32] REGULARITY OF SOLUTIONS TO NONLINEAR DISPERSIVE EQUATIONS
    PONCE, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 78 (01) : 122 - 135
  • [33] Mathematical aspects of Nonlinear Dispersive Equations
    Precup, Radu
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (04): : 167 - 167
  • [34] FIRST INTEGRALS FOR NONLINEAR DISPERSIVE EQUATIONS
    Helein, Frederic
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (10) : 6939 - 6978
  • [35] Nonlinear geometric dispersive equations: an overview
    Tataru, Daniel
    ALEXANDRU MYLLER MATHEMATICAL SEMINAR, 2011, 1329 : 216 - 235
  • [36] Oscillations in a nonlinear dispersive system of equations
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 1996, 76 (suppl 5):
  • [37] Compactons in a class of nonlinear dispersive equations
    Wazwaz, AM
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (3-4) : 333 - 341
  • [38] Nonexistence of global solutions to new ordinary differential inequality and applications to nonlinear dispersive equations
    Kutev, Nikolay
    Kolkovska, Natalia
    Dimova, Milena
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (09) : 2287 - 2297
  • [39] Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations
    Marciniak-Czochra, Anna
    Mikelic, Andro
    Stiehl, Thomas
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (14) : 5691 - 5710
  • [40] Renormalization, Isogenies, and Rational Symmetries of Differential Equations
    Bostan, A.
    Boukraa, S.
    Hassani, S.
    Maillard, J. -M.
    Weil, J. -A.
    Zenine, N.
    Abarenkova, N.
    ADVANCES IN MATHEMATICAL PHYSICS, 2010, 2010