A Para-Differential Renormalization Technique for Nonlinear Dispersive Equations

被引:45
|
作者
Herr, Sebastian [1 ]
Ionescu, Alexandru D. [2 ]
Kenig, Carlos E. [3 ]
Koch, Herbert [1 ]
机构
[1] Univ Bonn, Math Inst, D-53115 Bonn, Germany
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Dispersion generalized Benjamin-Ono equation; Frequency-dependent renormalization; Global well-posedness; L-2 initial data; GLOBAL WELL-POSEDNESS; BENJAMIN-ONO-EQUATION; KDV;
D O I
10.1080/03605302.2010.487232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For alpha. epsilon (1, 2) we prove that the initial-value problem Sigma partial derivative(t)u + D-alpha partial derivative(x)u + partial derivative(x) (u(2)/2) = 0 on R-x x R-t; u(0) = phi, is globally well-posed in the space of real-valued L-2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.
引用
收藏
页码:1827 / 1875
页数:49
相关论文
共 50 条
  • [1] Construction of Periodic Solutions for Nonlinear Wave Equations by a Para-differential Method
    Chen, Bochao
    Gao, Yixian
    Li, Yong
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (05): : 1057 - 1097
  • [2] The existence of periodic solutions for nonlinear beam equations on Td by a para-differential method
    Chen, Bochao
    Li, Yong
    Gao, Yixian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) : 2546 - 2574
  • [3] On the factorization technique for the dispersive nonlinear equations
    Naumkin, Pavel I.
    ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVE AND WAVE EQUATIONS, 2019, 81 : 323 - 350
  • [4] THE COMPOSITION IN LIZORKIN-TRIEBEL SPACES VIA PARA-DIFFERENTIAL OPERATORS
    Moussai, Madani
    MATHEMATICAL REPORTS, 2011, 13 (02): : 151 - 170
  • [5] Fractal solutions of linear and nonlinear dispersive partial differential equations
    Chousionis, Vasilis
    Erdogan, M. Burak
    Tzirakis, Nikolaos
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 110 : 543 - 564
  • [6] A study on nonlinear dispersive partial differential equations of compact and noncompact solutions
    Wazwaz, AM
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 135 (2-3) : 399 - 409
  • [7] Trees, renormalization and differential equations
    Brouder, C
    BIT NUMERICAL MATHEMATICS, 2004, 44 (03) : 425 - 438
  • [8] Method for finding highly dispersive optical solitons of nonlinear differential equations
    Kudryashov, Nikolay A.
    OPTIK, 2020, 206
  • [9] Formal differential equations and renormalization
    Menous, Frederic
    RENORMALIZATION AND GALOIS THEORIES, 2009, 15 : 229 - +
  • [10] Trees, Renormalization and Differential Equations
    Ch. Brouder
    BIT Numerical Mathematics, 2004, 44 : 425 - 438