Nonlocal fractional semilinear differential inclusions with noninstantaneous impulses and of order α ∈(1,2)

被引:7
|
作者
Wang, JinRong [1 ]
Ibrahim, Ahmed G. [2 ]
O'Regan, Donal [3 ]
Elmandouh, Adel A. [2 ,4 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] King Faisal Univ, Fac Sci, Dept Math, Al Hasa 31982, Saudi Arabia
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[4] Mansoura Univ, Fac Sci, Dept Math, Mansoura, Egypt
基金
中国国家自然科学基金;
关键词
compactness; fractional evolution inclusions; nonempty; non-instantaneous impulses; solution set; EQUATIONS; EXISTENCE;
D O I
10.1515/ijnsns-2019-0179
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we establish the existence of mild solutions for nonlocal fractional semilinear differential inclusions with noninstantaneous impulses of order a. (1,2) and generated by a cosine family of bounded linear operators. Moreover, we show the compactness of the solution set. We consider both the case when the values of the multivalued function are convex and nonconvex. Examples are given to illustrate the theory.
引用
下载
收藏
页码:593 / 605
页数:13
相关论文
共 50 条
  • [21] Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness
    Wang, JinRong
    Ibrahim, A. G.
    O'Regan, D.
    Zhou, Yong
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (05): : 1362 - 1392
  • [22] Semilinear fractional order integro-differential inclusions with infinite delay
    Aissani, Khalida
    Benchohra, Mouffak
    Darwish, Mohamed Abdalla
    GEORGIAN MATHEMATICAL JOURNAL, 2018, 25 (03) : 317 - 327
  • [23] The Existence of Solutions for w-Weighted ψ-Hilfer Fractional Differential Inclusions of Order μ ∈ (1,2) with Non-Instantaneous Impulses in Banach Spaces
    Alsheekhhussain, Zainab
    Ibrahim, Ahmad Gamal
    Al-Sawalha, Mohammed Mossa
    Jawarneh, Yousef
    FRACTAL AND FRACTIONAL, 2024, 8 (03)
  • [24] ON BOUNDED SOLUTIONS OF SEMILINEAR FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS IN HILBERT SPACES
    Kamenskii, M.
    Kornev, S.
    Obukhovskii, V.
    Wong, N. C.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (02): : 251 - 265
  • [25] Existence results for first and second order semilinear differential inclusions with nonlocal conditions
    Gorniewicz, L.
    Ntouyas, S. K.
    O'Regan, D.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2007, 9 (03) : 287 - 310
  • [26] MILD SOLUTIONS FOR NONLOCAL FRACTIONAL SEMILINEAR FUNCTIONAL DIFFERENTIAL INCLUSIONS INVOLVING CAPUTO DERIVATIVE
    Ibrahim, Ahmed G.
    Almoulhim, Noriah
    MATEMATICHE, 2014, 69 (01): : 125 - 148
  • [27] Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations
    Balasubramaniam, P.
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [28] A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r ∈(1,2) with delay
    Dineshkumar, C.
    Udhayakumar, R.
    Vijayakumar, V.
    Shukla, Anurag
    Nisar, Kottakkaran Sooppy
    CHAOS SOLITONS & FRACTALS, 2021, 153
  • [29] Approximate Controllability of Fractional Semilinear Stochastic System of Order α ∈(1,2]
    Shukla, Anurag
    Sukavanam, N.
    Pandey, D. N.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2017, 23 (04) : 679 - 691
  • [30] Approximate Controllability of Fractional Semilinear Stochastic System of Order α∈ (1,2]
    Anurag Shukla
    N Sukavanam
    D. N. Pandey
    Journal of Dynamical and Control Systems, 2017, 23 : 679 - 691