Prediction of triptolide targets in rheumatoid arthritis using network pharmacology and molecular docking

被引:67
|
作者
Song, Xinqiang [1 ,2 ]
Zhang, Yu [1 ]
Dai, Erqin [1 ]
Wang, Lei [1 ]
Du, Hongtao [1 ]
机构
[1] Xinyang Normal Univ, Dept Biol Sci, Xinyang 464000, Peoples R China
[2] Inst Conservat & Utilizat Agrobioresources Dabie, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Triptolide; Rheumatoid arthritis; Ingenuity pathway analysis; Network pharmacology; Molecular docking; DITERPENOID TRIEPOXIDE; GENE-EXPRESSION; DRUG DISCOVERY; SUPPRESSES; STRATEGIES; NEUROINFLAMMATION; ACTIVATION; INHIBITORS; MODEL;
D O I
10.1016/j.intimp.2019.106179
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Network pharmacology is a novel approach that uses bioinformatics to predict and identify multiple drug targets and interactions in disease. Here, we used network pharmacology to investigate the mechanism by which triptolide acts in rheumatoid arthritis (RA). We first searched public databases for genes and proteins known to be associated with RA, as well as those predicted to be targets of triptolide, and then used Ingenuity Pathway Analysis (IPA) to identify enriched gene pathways and networks. Networks and pathways that overlapped between RA-associated proteins and triptolide target proteins were then used to predict candidate protein targets of triptolide in RA. The following proteins were found to occur in both RA-associated networks and triptolide target networks: CD274, RELA, MCL1, MAPK8, CXCL8, STAT1, STAT3, c-JUN, JNK, c-Fos, NF-kappa B, and TNF-alpha. Docking studies suggested that triptolide can fit in the binding pocket of the six top candidate triptolide target proteins (CD274, RELA, MCL1, MAPK8, CXCL8 and STAT1). The overlapping pathways were activation of Th1 and Th2 cells, macrophages, fibroblasts and endothelial cells in RA, while the overlapping networks were involved in cellular movement, hematological system development and function, immune cell trafficking, cell-to-cell signaling and interaction, inflammatory response, cellular function and maintenance, and cell death and survival. These results show that network pharmacology can be used to generate hypotheses about how triptolide exerts therapeutic effects in RA. Network pharmacology may be a useful method for characterizing multi-target drugs in complex diseases.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Investigation of Alpinia calcarata constituent interactions with molecular targets of rheumatoid arthritis: docking, molecular dynamics, and network approach
    Erusappan, Thamizharasi
    Kondapuram, Sree Karani
    Ekambaram, Sanmuga Priya
    Coumar, Mohane Selvaraj
    JOURNAL OF MOLECULAR MODELING, 2021, 27 (01)
  • [22] Identification of Tumor Necrosis Factor-Alpha (TNF-α) Inhibitor in Rheumatoid Arthritis Using Network Pharmacology and Molecular Docking
    Bai, Liang Liang
    Chen, Hao
    Zhou, Peng
    Yu, Jun
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [23] Investigations of nitazoxanide molecular targets and pathways for the treatment of hepatocellular carcinoma using network pharmacology and molecular docking
    Khan, Shakeel Ahmad
    Lee, Terence Kin Wah
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [24] Exploring the Molecular Targets for the Antidepressant and Antisuicidal Effects of Ketamine Enantiomers by Using Network Pharmacology and Molecular Docking
    Alte, Glorister A.
    Rodrigues, Ana Lucia S.
    PHARMACEUTICALS, 2023, 16 (07)
  • [25] Exploring the potential molecular mechanism of Gualou Guizhi decoction in the treatment of rheumatoid arthritis based on network pharmacology and molecular docking
    Duan, Zhihao
    Jin, Can
    Ma, Shuai
    Liu, Jinlang
    Li, Shigang
    Zhou, You
    MEDICINE, 2024, 103 (01) : E36844
  • [26] Investigating the molecular mechanism of epimedium herb in treating rheumatoid arthritis through network pharmacology, molecular docking, and experimental validation
    Ding, Chunhui
    Liu, Qingyang
    You, Xiaohong
    Yuan, Jianming
    Xia, Jinjun
    Tan, Yuan
    Hu, Yunxia
    Wang, Qiubo
    MOLECULAR DIVERSITY, 2025,
  • [27] Targets of hydroxychloroquine in the treatment of rheumatoid arthritis. A network pharmacology study
    Xie, Bo
    Lu, Haojie
    Xu, Jinhui
    Luo, Haixin
    Hu, Yebei
    Chen, Yi
    Geng, Qingwei
    Song, Xiuzu
    JOINT BONE SPINE, 2021, 88 (02)
  • [28] Potential Mechanisms of Triptolide against Diabetic Cardiomyopathy Based on Network Pharmacology Analysis and Molecular Docking
    Zhu, Ning
    Huang, Bingwu
    Zhu, Liuyan
    Wang, Yi
    JOURNAL OF DIABETES RESEARCH, 2021, 2021
  • [29] Mechanisms of Tripterygium wilfordii Hook F on treating rheumatoid arthritis explored by network pharmacology analysis and molecular docking
    Mao, Ni
    Xie, Xi
    OPEN MEDICINE, 2024, 19 (01):
  • [30] Exploring potential network pharmacology-and molecular docking-based mechanism of melittin in treating rheumatoid arthritis
    Yang, Linfu
    Zhao, Wenzheng
    Gong, Xueyang
    Yue, Dan
    Liu, Yiqiu
    Tian, Yakai
    Dong, Kun
    MEDICINE, 2023, 102 (32) : E34728