Assessment of Fish Protein Hydrolysates in Juvenile Largemouth Bass (Micropterus salmoides) Diets: Effect on Growth, Intestinal Antioxidant Status, Immunity, and Microflora

被引:17
|
作者
Fan, Ze [1 ]
Wu, Di [1 ]
Li, Jinnan [1 ]
Zhang, Yuanyuan [1 ]
Cui, Zhiying [2 ]
Li, Tianbi [2 ]
Zheng, Xianhu [1 ]
Liu, Hongbai [1 ]
Wang, Liansheng [1 ]
Li, Hongqin [3 ]
机构
[1] Chinese Acad Fishery Sci, Heilongjiang River Fisheries Res Inst, Key Lab Aquat Anim Dis & Immune Technol Heilongjia, Harbin, Peoples R China
[2] Guangdong Xipu Biotechnol Co Ltd, Guangzhou, Peoples R China
[3] New Hope Liuhe Co Ltd, Anim Feed Sci Res Inst, Chengdu, Peoples R China
来源
FRONTIERS IN NUTRITION | 2022年 / 9卷
关键词
fish protein hydrolysates; largemouth bass; protein synthesis; intestinal immunity; intestinal microflora; intestinal health; GUT MICROBIOTA; ATLANTIC COD; DICENTRARCHUS-LABRAX; DIGESTIVE ENZYMES; CYPRINUS-CARPIO; PERFORMANCE; MEAL; EXPRESSION; HORMONE; SUPPLEMENTATION;
D O I
10.3389/fnut.2022.816341
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Varying dietary inclusion levels of fish protein hydrolysates (FPH) were applied in a feeding experiment with juvenile largemouth bass (Micropterus salmoides) to assess their effects on growth, intestinal antioxidant status, immunity, and microflora. FPH were added in 4 dietary levels: 0 g/kg (control group, FPH-0), 10 g/kg (FPH-10), 30 g/kg (FPH-30), and 50 g/kg (FPH-50) dry matter, respectively substituting 0, 5.3, 16.3, and 27.3% of fish meal with dietary fish meal. Quadruplicate groups of 25 juvenile largemouth bass with initial body weight 9.51 +/- 0.03 g were fed during the 56-day feeding experiment. Experimental results showed that fish fed FPH-30 obtained a significantly higher weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER), and significant feed conversion rate (FCR) compared to the other three groups (P < 0.05). FPH-30 group also promoted protein synthesis and deposition, as evidenced by the higher whole-body crude protein contents, the higher expressions of GH1, IGF-1, TOR, and S6K in the liver, and SLC7A5, SLC7A8, SLC38A2, and SLC15A2 in the intestine than the other three groups. FPH-30 group could also enhance intestinal health status by increasing the activities of SOD, POD, CAT, GSH-Px, and T-AOC activities by upregulating the expressions of SOD, GSH-Px, IL1 beta, and TNF beta, and by reducing the MDA contents and the expressions of IL15, Caspase 3, Caspase 9, and Caspase 10 than other groups. Compared to the control group, the Actinobacteriota abundance markedly decreased in FPH treatments, while the variation tendency of the phylum Proteobacteria was opposite. The peak value of Firmicutes:Bacteroidetes ratio and the lowest of Bacteroidetes abundance were seen in largemouth bass fed FPH-30 (P < 0.05). Fish in three FPH treatments had lower abundances of opportunistic pathogens Staphylococcus and Plesiomonas than fish in the control group. In conclusion, FPH is a nutritious feed ingredient for juvenile largemouth bass, and can be added to a dietary level of 30 g/kg dry matter replacing fish meal without any negative effect on growth and feed utilization. FPH supplements could also strengthen the intestinal immune mechanisms of largemouth bass to tackle the immunodeficiency produced by fish meal replacement.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Effects of Five Lipid Sources on Growth, Hematological Parameters, Immunity and Muscle Quality in Juvenile Largemouth Bass (Micropterus salmoides)
    Song, Rui
    Yao, Xinfeng
    Jing, Futao
    Yang, Wenxue
    Wu, Jiaojiao
    Zhang, Hao
    Zhang, Penghui
    Xie, Yuanyuan
    Pan, Xuewen
    Zhao, Long
    Wu, Chenglong
    ANIMALS, 2024, 14 (05):
  • [42] Effects of guar gum supplementation in high-fat diets on fish growth, gut histology, intestinal oxidative stress, inflammation, and apoptosis in juvenile largemouth bass (Micropterus salmoides)
    Zhao, Xiaoyu
    Chen, Weijun
    Tian, Erjie
    Zhang, Yuanyuan
    Gao, Xiaochan
    Huang, Yong
    Ren, Hongtao
    Chang, Kuo
    Sun, Ping
    Gao, Shiyang
    ISRAELI JOURNAL OF AQUACULTURE-BAMIDGEH, 2023, 75
  • [43] Effect of Stocking Density on Growth, Serum Biochemical Parameters, Digestive Enzymes Activity and Antioxidant Status of Largemouth Bass, Micropterus salmoides
    Wang, Yuyu
    Xu, Gangchun
    Nie, Zhijuan
    Li, Quanjie
    Shao, Nailin
    Xu, Pao
    PAKISTAN JOURNAL OF ZOOLOGY, 2019, 51 (04) : 1509 - 1517
  • [44] Effects of selenoprotein extracts from Cardamine hupingshanensis on growth, selenium metabolism, antioxidant capacity, immunity and intestinal health in largemouth bass Micropterus salmoides
    Zhang, Hao
    Zhao, Long
    Zhang, Penghui
    Xie, Yuanyuan
    Yao, Xinfeng
    Pan, Xuewen
    Fu, Yifan
    Wei, Jiao
    Bai, Hongfeng
    Shao, Xianping
    Ye, Jinyun
    Wu, Chenglong
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [45] Partial substitution of soybean meal with fermented soybean residue in diets for juvenile largemouth bass, Micropterus salmoides
    Jiang, Y.
    Zhao, P. -F.
    Lin, S. -M.
    Tang, R. -J.
    Chen, Y. -J.
    Luo, L.
    AQUACULTURE NUTRITION, 2018, 24 (04) : 1213 - 1222
  • [46] Addition of L-carnitine to formulated feed improved growth performance, antioxidant status and lipid metabolism of juvenile largemouth bass, Micropterus salmoides
    Chen, Yifang
    Sun, Zhenzhu
    Liang, Zuman
    Xie, Yongdong
    Tan, Xiaohong
    Su, Jiliang
    Luo, Qiulan
    Zhu, Junyan
    Liu, Qingying
    Wang, Anli
    AQUACULTURE, 2020, 518
  • [47] Effects of Five Dietary Carbohydrate Sources on Growth, Glucose Metabolism, Antioxidant Capacity and Immunity of Largemouth Bass (Micropterus salmoides)
    Qian, Pengcheng
    Liu, Yan
    Zhang, Hao
    Zhang, Penghui
    Xie, Yuanyuan
    Wu, Chenglong
    ANIMALS, 2024, 14 (10):
  • [48] Effect of dietary iron (Fe) level on growth performance and health status of largemouth bass (Micropterus salmoides)
    Mao, Xiangjie
    Chen, Wangwang
    Long, Xianmei
    Pan, Xiaomei
    Liu, Guoqing
    Hu, Wenguang
    Gu, Dianchao
    Tan, Qingsong
    AQUACULTURE, 2024, 581
  • [49] Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides
    Guo, Jia-ling
    Zhou, Yue-lang
    Zhao, Hang
    Chen, Wen-Yan
    Chen, Yong-Jun
    Lin, Shi-Mei
    AQUACULTURE, 2019, 506 : 394 - 400
  • [50] Effect of catch-and-release angling on growth of largemouth bass, Micropterus salmoides
    Pope, KL
    Wilde, GR
    FISHERIES MANAGEMENT AND ECOLOGY, 2004, 11 (01) : 39 - 44