Assessment of Fish Protein Hydrolysates in Juvenile Largemouth Bass (Micropterus salmoides) Diets: Effect on Growth, Intestinal Antioxidant Status, Immunity, and Microflora

被引:17
|
作者
Fan, Ze [1 ]
Wu, Di [1 ]
Li, Jinnan [1 ]
Zhang, Yuanyuan [1 ]
Cui, Zhiying [2 ]
Li, Tianbi [2 ]
Zheng, Xianhu [1 ]
Liu, Hongbai [1 ]
Wang, Liansheng [1 ]
Li, Hongqin [3 ]
机构
[1] Chinese Acad Fishery Sci, Heilongjiang River Fisheries Res Inst, Key Lab Aquat Anim Dis & Immune Technol Heilongjia, Harbin, Peoples R China
[2] Guangdong Xipu Biotechnol Co Ltd, Guangzhou, Peoples R China
[3] New Hope Liuhe Co Ltd, Anim Feed Sci Res Inst, Chengdu, Peoples R China
来源
FRONTIERS IN NUTRITION | 2022年 / 9卷
关键词
fish protein hydrolysates; largemouth bass; protein synthesis; intestinal immunity; intestinal microflora; intestinal health; GUT MICROBIOTA; ATLANTIC COD; DICENTRARCHUS-LABRAX; DIGESTIVE ENZYMES; CYPRINUS-CARPIO; PERFORMANCE; MEAL; EXPRESSION; HORMONE; SUPPLEMENTATION;
D O I
10.3389/fnut.2022.816341
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Varying dietary inclusion levels of fish protein hydrolysates (FPH) were applied in a feeding experiment with juvenile largemouth bass (Micropterus salmoides) to assess their effects on growth, intestinal antioxidant status, immunity, and microflora. FPH were added in 4 dietary levels: 0 g/kg (control group, FPH-0), 10 g/kg (FPH-10), 30 g/kg (FPH-30), and 50 g/kg (FPH-50) dry matter, respectively substituting 0, 5.3, 16.3, and 27.3% of fish meal with dietary fish meal. Quadruplicate groups of 25 juvenile largemouth bass with initial body weight 9.51 +/- 0.03 g were fed during the 56-day feeding experiment. Experimental results showed that fish fed FPH-30 obtained a significantly higher weight gain rate (WGR), specific growth rate (SGR), protein efficiency ratio (PER), and significant feed conversion rate (FCR) compared to the other three groups (P < 0.05). FPH-30 group also promoted protein synthesis and deposition, as evidenced by the higher whole-body crude protein contents, the higher expressions of GH1, IGF-1, TOR, and S6K in the liver, and SLC7A5, SLC7A8, SLC38A2, and SLC15A2 in the intestine than the other three groups. FPH-30 group could also enhance intestinal health status by increasing the activities of SOD, POD, CAT, GSH-Px, and T-AOC activities by upregulating the expressions of SOD, GSH-Px, IL1 beta, and TNF beta, and by reducing the MDA contents and the expressions of IL15, Caspase 3, Caspase 9, and Caspase 10 than other groups. Compared to the control group, the Actinobacteriota abundance markedly decreased in FPH treatments, while the variation tendency of the phylum Proteobacteria was opposite. The peak value of Firmicutes:Bacteroidetes ratio and the lowest of Bacteroidetes abundance were seen in largemouth bass fed FPH-30 (P < 0.05). Fish in three FPH treatments had lower abundances of opportunistic pathogens Staphylococcus and Plesiomonas than fish in the control group. In conclusion, FPH is a nutritious feed ingredient for juvenile largemouth bass, and can be added to a dietary level of 30 g/kg dry matter replacing fish meal without any negative effect on growth and feed utilization. FPH supplements could also strengthen the intestinal immune mechanisms of largemouth bass to tackle the immunodeficiency produced by fish meal replacement.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Intestinal flora and immunity response to different viscous diets in juvenile largemouth bass, Micropterus salmoides
    Liu, Yu
    Cao, Yixiong
    Zhang, Yumeng
    Fan, Jiongting
    Zhou, Hang
    Huang, Huajing
    Jiang, Wen
    Zhang, Wei
    Deng, Junming
    Tan, Beiping
    FISH & SHELLFISH IMMUNOLOGY, 2022, 127 : 1012 - 1023
  • [2] Partial substitution of fish meal by Clostridium autoethanogenum protein in the diets of juvenile largemouth bass (Micropterus salmoides)
    Zhu, Shujie
    Gao, Weihua
    Wen, Zhengyong
    Chi, Shuyan
    Shi, Yuhui
    Hu, Wei
    Tan, Beiping
    AQUACULTURE REPORTS, 2022, 22
  • [3] An Evaluation of Laminarin Additive in the Diets of Juvenile Largemouth Bass (Micropterus salmoides): Growth, Antioxidant Capacity, Immune Response and Intestinal Microbiota
    Wu, Youjun
    Cheng, Yan
    Qian, Shichao
    Zhang, Wei
    Huang, Mengmeng
    Yang, Shun
    Fei, Hui
    ANIMALS, 2023, 13 (03):
  • [4] Effects of alternate feeding between fish meal and novel protein diets on the intestinal health of juvenile largemouth bass (Micropterus salmoides)
    Li, Lukuan
    Liu, Xiaojuan
    Wang, Yu
    Huang, Yanqing
    Wang, Chunfang
    AQUACULTURE REPORTS, 2022, 23
  • [5] Effects of antimicrobial peptides on the growth performance, antioxidant and intestinal function in juvenile largemouth bass, Micropterus salmoides
    Li, Shuai
    Chi, ShuYan
    Cheng, Xiangtang
    Wu, Chenglong
    Xu, Qiaoqing
    Qu, Peng
    Gao, Weihua
    Liu, Yongsheng
    AQUACULTURE REPORTS, 2020, 16
  • [6] Dietary methionine hydroxy analogue supplementation benefits on growth, intestinal antioxidant status and microbiota in juvenile largemouth bass Micropterus salmoides
    Zhao, Ye
    Yang, Chao
    Zhu, Xiao-Xiao
    Feng, Lin
    Liu, Yang
    Jiang, Wei-Dan
    Wu, Pei
    Huang, Xiao-Li
    Chen, De-Fang
    Yang, Shi-Yong
    Luo, Wei
    Zhang, Jin-Xiu
    Li, Shu-Wei
    Diao, Hui
    Wei, Xiao-Lan
    Zhou, Meng-Jia
    Zhou, Xiao-Qiu
    Jiang, Jun
    AQUACULTURE, 2022, 556
  • [7] A Novel Approach in the Development of Larval Largemouth Bass Micropterus salmoides Diets Using Largemouth Bass Muscle Hydrolysates as the Protein Source
    Molinari, Giovanni S.
    Wojno, Michal
    Terova, Genciana
    Wick, Macdonald
    Riley, Hayden
    Caminiti, Jeffrey T.
    Kwasek, Karolina
    ANIMALS, 2023, 13 (03):
  • [8] Dietary valine affects growth performance, intestinal immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)
    Zhao, Fangyue
    Xu, Pao
    Xu, Gangchun
    Huang, Dongyu
    Zhang, Lu
    Ren, Mingchun
    Liang, Hualiang
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2023, 295
  • [9] Substitution of fish meal with enzyme-treated soybean in diets for juvenile largemouth bass (Micropterus salmoides)
    Liu, Xin
    Chi, Shuyan
    Li, Shuai
    Cheng, Xiaoli
    Gao, Weihua
    Xu, Qiaoqing
    Zhang, Wenbing
    Zhou, Xiaoqiu
    AQUACULTURE NUTRITION, 2021, 27 (05) : 1569 - 1577
  • [10] Effect of dietary levels of folic acid on growth performance, blood biochemistry, antioxidant capacity, and immunity of juvenile largemouth bass, Micropterus salmoides
    Hang, Ying
    Hua, Xueming
    Li, Xiang
    Yi, Wanting
    Cong, Xiangming
    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2022, 53 (04) : 836 - 847