An efficient superpostional quantum Johnson-Lindenstrauss lemma via unitary t-designs

被引:1
|
作者
Sen, Pranab [1 ,2 ]
机构
[1] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Mumbai, Maharashtra, India
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
关键词
Johnson-Lindenstrauss lemma; Dimension reduction; Quantum algorithms; Unitary designs;
D O I
10.1007/s11128-021-03238-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The famous Johnson-Lindenstrauss lemma states that for any set of n vectors {v(i)}(i=1)(n). C-d1 and any epsilon > 0, there is a linear transformation T : C-d1 -> C-d2, d(2) = O(epsilon(-2) log n) such that parallel to T(v(i))parallel to(2) is an element of (1 +/- epsilon) parallel to v(i)parallel to(2) for all i is an element of [n]. In fact, a Haar random d(1) x d(1) unitary transformation followed by projection onto the first d(2) coordinates followed by a scaling of root d(1)/d(2) works as a valid transformation T with high probability. In this work, we show that the Haar random d(1) x d(1) unitary can be replaced by a uniformly random unitary chosen from a finite set called an approximate unitary t-design for t = O(d(2)). Choosing a unitary from such a design requires only O(d(2) log d(1)) random bits as opposed to 2(Omega(d12)) random bits required to choose a Haar random unitary with reasonable precision. Moreover, since such unitaries can be efficiently implemented in the superpositional setting, our result can be viewed as an efficient quantum JohnsonLindenstrauss transform akin to efficient quantum Fourier transforms widely used in earlier work on quantum algorithms. We prove our result by leveraging a method of Low for showing concentration for approximate unitary t-designs. We discuss algorithmic advantages and limitations of our result and conclude with a toy application to private information retrieval.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [11] The Johnson-Lindenstrauss Lemma Almost Characterizes Hilbert Space, But Not Quite
    Johnson, William B.
    Naor, Assaf
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 43 (03) : 542 - 553
  • [12] Machine learning friendly set version of Johnson-Lindenstrauss lemma
    Klopotek, Mieczyslaw A.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (05) : 1961 - 2009
  • [13] The Johnson-Lindenstrauss lemma almost characterizes Hilbert space, but not quite
    Johnson, William B.
    Naor, Assaf
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 885 - +
  • [14] Accelerating Feature Based Registration Using the Johnson-Lindenstrauss Lemma
    Akselrod-Ballin, Ayelet
    Bock, Davi
    Reid, R. Clay
    Warfield, Simon K.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2009, PT I, PROCEEDINGS, 2009, 5761 : 632 - +
  • [15] Generalizing the Johnson-Lindenstrauss lemma to k-dimensional affine subspaces
    Dmitriyuk, Alon
    Gordon, Yehoram
    STUDIA MATHEMATICA, 2009, 195 (03) : 227 - 241
  • [16] Faster Johnson-Lindenstrauss transforms via Kronecker products
    Jin, Ruhui
    Kolda, Tamara G.
    Ward, Rachel
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (04) : 1533 - 1562
  • [17] Oblivious Dimension Reduction for k-Means: Beyond Subspaces and the Johnson-Lindenstrauss Lemma
    Becchetti, Luca
    Bury, Marc
    Cohen-Addad, Vincent
    Grandoni, Fabrizio
    Schwiegelshohn, Chris
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 1039 - 1050
  • [18] Privacy Preserving Collaborative Filtering via the Johnson-Lindenstrauss Transform
    Yang, Mengmeng
    Zhu, Tianqing
    Ma, Lichuan
    Xiang, Yang
    Zhou, Wanlei
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS / 11TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING / 14TH IEEE INTERNATIONAL CONFERENCE ON EMBEDDED SOFTWARE AND SYSTEMS, 2017, : 417 - 424
  • [19] Differential Private POI Queries via Johnson-Lindenstrauss Transform
    Yang, Mengmeng
    Zhu, Tianqing
    Liu, Bo
    Xiang, Yang
    Zhou, Wanlei
    IEEE ACCESS, 2018, 6 : 29685 - 29699
  • [20] Practical Johnson-Lindenstrauss Transforms via Algebraic Geometry Codes
    You, Lin
    Knoll, Fiona
    Mao, Yue
    Gao, Shuhong
    2017 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), 2017, : 171 - 176