Finite-dimensional attractors for the Kirchhoff models

被引:16
|
作者
Yang Zhijian [1 ]
机构
[1] Zhengzhou Univ, Dept Chem, Zhengzhou 450052, Peoples R China
关键词
elastoplasticity; fractals; initial value problems; plastic flow; turbulence; SEMILINEAR WAVE-EQUATION; GLOBAL ATTRACTORS; LONGTIME BEHAVIOR; TIME BEHAVIOR; EXISTENCE; NONEXISTENCE; UNIQUENESS;
D O I
10.1063/1.3477939
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper studies the existence of the finite-dimensional global attractor and exponential attractor for the dynamical system associated with the Kirchhoff models arising in elasto-plastic flow u(tt)-div{vertical bar del u vertical bar(m-1)del u}-Delta(2)u+h(u(t))+g(u)=f(x). By using the method of e-trajectories and the operator technique, it proves that under subcritical case, 1 <= m < N+2/(N-2)(+), the above-mentioned dynamical system possesses in different phase spaces a finite-dimensional (weak) global attractor and a weak exponential attractor, respectively. For application, the fact shows that for the concerned elasto-plastic flow the permanent regime (global attractor) can be observed when the excitation starts from any bounded set in phase space, and the fractal dimension of the attractor, that is, the number of degree of freedom of the turbulent phenomenon and thus the level of complexity concerning the flow, is finite. (C) 2010 American Institute of Physics. [doi:10.1063/1.3477939]
引用
收藏
页数:25
相关论文
共 50 条
  • [41] FINITE-DIMENSIONAL ATTRACTORS FOR THE BERTOZZI--ESEDOGLU--GILLETTE--CAHN--HILLIARD EQUATION IN IMAGE INPAINTING
    Cherfils, Laurence
    Fakih, Hussein
    Miranville, Alain
    INVERSE PROBLEMS AND IMAGING, 2015, 9 (01) : 105 - 125
  • [42] Global attractors and their Hausdorff dimensions for a class of Kirchhoff models
    Yang Zhijian
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
  • [43] Finite dimensional dynamics on attractors
    Eden, A
    MATHEMATICS AND MATHEMATICS EDUCATION, 2002, : 90 - 97
  • [44] Finite-Dimensional Infinite Constellations
    Ingber, Amir
    Zamir, Ram
    Feder, Meir
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (03) : 1630 - 1656
  • [45] FINITE-DIMENSIONAL HILBERT SPACES
    HALMOS, PR
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (05): : 457 - &
  • [46] On commutative finite-dimensional nilalgebras
    Fernandez J.C.G.
    Garcia C.I.
    São Paulo Journal of Mathematical Sciences, 2016, 10 (1) : 104 - 121
  • [47] Hyperreflexivity of finite-dimensional subspaces
    Müller, V
    Ptak, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 218 (02) : 395 - 408
  • [48] PERIOD-DOUBLING BIFURCATION IN FINITE-DIMENSIONAL MODELS OF CONVECTION.
    Zaks, M.A.
    Lyubimov, D.V.
    Fluid mechanics. Soviet research, 1987, 16 (03): : 55 - 60
  • [49] Neuronal models in infinite-dimensional spaces and their finite-dimensional projections: Part II
    Brzychczy, S.
    Leszczynski, H.
    Poznanski, R. R.
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2012, 11 (03) : 265 - 276
  • [50] The finite-dimensional Witsenhausen counterexample
    Grover, Pulkit
    Sahai, Anant
    Park, Se Yong
    2009 7TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS, 2009, : 604 - 613