Three effective preconditioners for double saddle point problem

被引:2
|
作者
He, Yuwen [1 ]
Li, Jun [1 ]
Meng, Lingsheng [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 07期
基金
中国国家自然科学基金;
关键词
double saddle point problems; preconditioning; spectral properties; Krylov subspace method;
D O I
10.3934/math.2021406
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly propose three preconditioners for solving double saddle point problems, which arise from some practical problems. Firstly, the solvability of this kind of problem is investigated under suitable assumption. Next, we prove that all the eigenvalues of the three preconditioned matrices are 1. Furthermore, we analyze the eigenvector distribution and the upper bound of the minimum polynomial degree of the corresponding preconditioned matrix. Finally, numerical experiments are carried to show the effectiveness of the proposed preconditioners.
引用
收藏
页码:6933 / 6947
页数:15
相关论文
共 50 条
  • [41] A three-level BDDC algorithm for a saddle point problem
    Tu, Xuemin
    NUMERISCHE MATHEMATIK, 2011, 119 (01) : 189 - 217
  • [42] Parallel fully coupled Schwarz preconditioners for saddle point problems
    Hwang, FN
    Cai, XC
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2006, 22 : 146 - 162
  • [43] Modified restrictive preconditioners for double saddle point problems arising from liquid crystal director modeling
    Fang Chen
    Shu-Ru He
    Computational and Applied Mathematics, 2024, 43
  • [44] Preconditioners for the geometry optimisation and saddle point search of molecular systems
    Letif Mones
    Christoph Ortner
    Gábor Csányi
    Scientific Reports, 8
  • [45] Preconditioners for the geometry optimisation and saddle point search of molecular systems
    Mones, Letif
    Ortner, Christoph
    Csanyi, Gabor
    SCIENTIFIC REPORTS, 2018, 8
  • [46] Refined saddle-point preconditioners for discretized Stokes problems
    Pearson, John W.
    Pestana, Jennifer
    Silvester, David J.
    NUMERISCHE MATHEMATIK, 2018, 138 (02) : 331 - 363
  • [47] Block triangular preconditioners for symmetric saddle-point problems
    Simoncini, V
    APPLIED NUMERICAL MATHEMATICS, 2004, 49 (01) : 63 - 80
  • [48] NEW PRECONDITIONERS FOR NONSYMMETRIC AND INDEFINITE SADDLE POINT LINEAR SYSTEMS
    He, Jun
    Huang, Ting-Zhu
    MISKOLC MATHEMATICAL NOTES, 2011, 12 (01) : 41 - 49
  • [49] Block LU preconditioners for symmetric and nonsymmetric saddle point problems
    Little, L
    Saad, Y
    Smoch, L
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (02): : 729 - 748
  • [50] Extended shift-splitting preconditioners for saddle point problems
    Zheng, Qingqing
    Lu, Linzhang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 70 - 81