Extremal covariant positive operator valued measures

被引:20
|
作者
Chiribella, G
D'Ariano, GM
机构
[1] Dipartimento Fis A Volta, Unita Pavia, Ist Nazl Fis Mat, QUIT Grp, I-27100 Pavia, Italy
[2] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
关键词
D O I
10.1063/1.1806262
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the convex set of positive operator valued measures (POVM) which are covariant under a finite dimensional unitary projective representation of a group. We derive a general characterization for the extremal points, and provide bounds for the ranks of the corresponding POVM densities, also relating extremality to uniqueness and stability of optimized measurements. Examples of applications are given. (C) 2004 American Institute of Physics.
引用
下载
收藏
页码:4435 / 4447
页数:13
相关论文
共 50 条
  • [21] A geometrical characterization of commutative positive operator valued measures
    Beneduci, Roberto
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (06)
  • [22] Dynamical model for positive-operator-valued measures
    De Pasquale, A.
    Foti, C.
    Cuccoli, A.
    Giovannetti, V
    Verrucchi, P.
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [23] Protocol for fermionic positive-operator-valued measures
    Arvidsson-Shukur, D. R. M.
    Lepage, H. V.
    Owen, E. T.
    Ferrus, T.
    Barnes, C. H. W.
    PHYSICAL REVIEW A, 2017, 96 (05)
  • [24] An Entropic Uncertainty Principle for Positive Operator Valued Measures
    Michel Rumin
    Letters in Mathematical Physics, 2012, 100 : 291 - 308
  • [25] An Entropic Uncertainty Principle for Positive Operator Valued Measures
    Rumin, Michel
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 100 (03) : 291 - 308
  • [26] On the convex structure of process positive operator valued measures
    Jencova, Anna
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (01)
  • [27] On Optimization Problem for Positive Operator-Valued Measures
    Holevo, A. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (07) : 1646 - 1650
  • [28] Positive Operator Valued Measures and Feller Markov kernels
    Beneduci, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (01) : 50 - 71
  • [29] On Optimization Problem for Positive Operator-Valued Measures
    A. S. Holevo
    Lobachevskii Journal of Mathematics, 2022, 43 : 1646 - 1650
  • [30] Uncertainty relations for positive-operator-valued measures
    Massar, Serge
    PHYSICAL REVIEW A, 2007, 76 (04):