Fluorine-Doped Carbon-Coated Mesoporous Ti2Nb10O29 Microspheres as a High-Performance Anode for Lithium-Ion Batteries

被引:18
|
作者
Ji, Xiaoxu [1 ]
Yang, Yan [2 ]
Ding, Yanhua [2 ]
Lu, Zhenxiao [2 ]
Liu, Guangyin [2 ]
Liu, Yiyang [2 ]
Song, Jianglong [2 ]
Yang, Zhizheng [3 ]
Liu, Xiaodi [2 ]
机构
[1] Nanyang Normal Univ, Coll Phys & Elect Engn, Nanyang 473061, Peoples R China
[2] Nanyang Normal Univ, Coll Chem & Pharmaceut Engn, Nanyang 473061, Peoples R China
[3] Jilin Univ, Coll Mat Sci & Engn, Key Lab Automobile Mat, Minist Educ, Changchun 130022, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2022年 / 126卷 / 18期
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL PERFORMANCE; ENERGY-STORAGE; TIO2; ANATASE; COMPOSITE; NANOSPHERES; NANOWIRES; GRAPHENE; INSIGHTS; ARRAYS;
D O I
10.1021/acs.jpcc.1c10931
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ti2Nb10O29 is a prospective anodic material for high-power batteries based on lithium ions owing to its excellent safety, cyclability, and exceptionally good performance. However, its low electrical conductivity restricts its potential uses. In this work, a uniform F-doped ultrathin carbon-based coating layer was introduced on mesoporous Ti2Nb10O29 microspheres via a convenient thermal treatment method, with polyvinylidene fluoride as the source of fluoride and carbon. The use of these mesoporous structures in a Li ion battery as the anode could significantly promote the electrolyte permeation, architectural stability of Ti2Nb10O29, and Car transportation efficiency. The Ti2Nb10O29 @F-C microspheres manifested a superior cycling stability (202 mAh g(-1) at 10 C after 500 cycles) and a remarkable high-rate capability (211 mAh g(-1) at 30C), and they functioned quite well in a LiNi0.5Mn0.3Co0.2O2 parallel to Ti2Nb10O29@F-C full cell. These results indicate that for high-rate lithium-ion batteries, Ti2Nb10O29@F-C has proven to be appropriate for use as an anodic material.
引用
收藏
页码:7799 / 7808
页数:10
相关论文
共 50 条
  • [31] Nitrogen-doped carbon-coated cotton-derived carbon fibers as high-performance anode materials for lithium-ion batteries
    Liu, Xinglian
    Meng, Yanshuang
    Li, Ruinian
    Du, Mengqi
    Zhu, Fuliang
    Zhang, Yue
    IONICS, 2019, 25 (12) : 5799 - 5807
  • [32] Nitrogen-doped carbon-coated cotton-derived carbon fibers as high-performance anode materials for lithium-ion batteries
    Xinglian Liu
    Yanshuang Meng
    Ruinian Li
    Mengqi Du
    Fuliang Zhu
    Yue Zhang
    Ionics, 2019, 25 : 5799 - 5807
  • [33] Carbon-Coated Ordered Mesoporous SnO2 Composite Based Anode Material for High Performance Lithium-Ion Batteries
    Heo, Jungwon
    Liu, Ying
    Haridas, Anupriya K.
    Jeon, Jinwoo
    Zhao, Xiaohui
    Cho, Kwon-Koo
    Ahn, Hyo-Jun
    Lee, Younki
    Ahn, Jou-Hyeon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (09) : 6415 - 6421
  • [34] Carbon-coated SnOx anchored on phosphorus-doped carbon framework as high performance anode of lithium-ion batteries
    Zhang, Xue
    Xu, Haoran
    Liu, Huanhuan
    Ma, Wenzhao
    Wu, Dapeng
    Meng, Zhaohui
    Wang, Lijuan
    CERAMICS INTERNATIONAL, 2024, 50 (02) : 3641 - 3652
  • [35] Facile Preparation of Nb2O5@Carbon Hollow Microspheres as High-Performance Anode Materials for Lithium-Ion Batteries
    Zhou, Wei
    Fang, Lin
    Long, Lan
    Wang, Linlin
    Chen, Han
    Li, Yang
    Jia, Chuankun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (01) : 268 - 271
  • [36] Porous carbon-coated Li2MoO4 as high-performance anode materials for lithium-ion batteries
    Zhang, Jianyin
    Li, Rongli
    Chen, Qian
    Zhao, Guohua
    Jia, Jianfeng
    MATERIALS LETTERS, 2018, 233 : 302 - 305
  • [37] Fluorine-Doped Carbon Coated LiFePO3.938F0.062 Composites as Cathode Materials for High-Performance Lithium-Ion Batteries
    Yan, Zhixiong
    Huang, Dequan
    Fan, Xiaoping
    Zheng, Fenghua
    Pan, Qichang
    Ma, Zhaoling
    Wang, Hongqiang
    Huang, Youguo
    Li, Qingyu
    FRONTIERS IN MATERIALS, 2020, 6
  • [38] Mesoscopic Ti2Nb10O29 cages comprised of nanorod units as high-rate lithium-ion battery anode
    Zeng, Jinfeng
    Yang, Le
    Shao, Ruiwen
    Zhou, Lei
    Utetiwabo, Wellars
    Wang, Saisai
    Chen, Renjie
    Yang, Wen
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 600 : 111 - 117
  • [39] Ti2Nb10O29 microspheres coated with ultrathin N-doped carbon layers by atomic layer deposition for enhanced lithium storage
    Wan, Gengping
    Yang, Liang
    Shi, Shaohua
    Tang, Yulin
    Xu, Xuefei
    Wang, Guizhen
    CHEMICAL COMMUNICATIONS, 2019, 55 (04) : 517 - 520
  • [40] Nitrogen-doped/carbon-coated 2D TiO2 Scaly clusters as high-performance anode for Lithium-ion batteries
    Sun, Jing-Jing
    Lei, Cai-Xia
    Li, Ze-Yang
    Jian, Min-Kun
    Lian, Ji-Qiong
    Ma, Li-Li
    Du, Wei-Hao
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (19) : 23798 - 23810