Ultra-Short-Term Solar PV Power Forecasting Method Based on Frequency-Domain Decomposition and Deep Learning

被引:7
|
作者
Hu, Lin [1 ]
Zhen, Zhao [1 ]
Wang, Fei [1 ]
Qiu, Gang [2 ]
Li, Yu [2 ]
Shafie-khah, Miadreza [3 ]
Catalno, Joao P. S. [4 ,5 ]
机构
[1] North China Elect Power Univ, Dept Elect Engn, Baoding 071003, Peoples R China
[2] State Grid Xinjiang Elect Power Co Ltd, Dispatch & Control Ctr, Urumqi 830018, Peoples R China
[3] Univ Vaasa, Sch Technol & Innovat, Vaasa 65200, Finland
[4] Univ Porto, Fac Engn, P-4200465 Porto, Portugal
[5] INESC TEC, P-4200465 Porto, Portugal
基金
国家重点研发计划;
关键词
PV power forecasting; ultra-short term; spectrum analysis; deep learning; frequency-domain decomposition; HYBRID METHOD; ENERGY; MODEL; OPTIMIZATION; EXTRACTION; PREDICTION; SCHEME;
D O I
10.1109/IAS44978.2020.9334889
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ultra-short-term photovoltaic (PV) power forecasting can support the real-time dispatching of power grid and the optimal operation of PV power station itself. However, due to various meteorological factors, the photovoltaic power has great fluctuations. To improve the refined ultra-short-term forecasting technology of PV power, this paper proposes an ultra-short-term forecasting model of PV power based on optimal frequency-domain decomposition and deep learning. First, the amplitude and phase of each frequency sine wave is obtained by fast Fourier decomposition. As the frequency demarcation point is different, the correlation between the decomposition component and the original data is analyzed. By minimizing the square of the difference that the correlation between low-frequency components and raw data is subtracted from the correlation between high-frequency components and raw data, the optimal frequency demarcation points for decomposition components are obtained. Then convolutional neural network is used to predict low-frequency component and high-frequency component, and final forecasting result is obtained by addition reconstruction. Finally, the paper compares forecasting results of the proposed model and the non-spectrum analysis model in the case of predicting the 1 hour, 2 hours, 3 hours, and 4 hours. The results fully show that the proposed model improves forecasting accuracy.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [21] Ultra-short-term Forecasting Method of Wind Power Based on Fluctuation Law Mining
    Liang Z.
    Wang Z.
    Feng S.
    Dong C.
    Wan X.
    Qiu G.
    Wang, Zheng (wangz@epri.sgcc.com.cn), 1600, Power System Technology Press (44): : 4096 - 4104
  • [22] TransPVP: A Transformer-Based Method for Ultra-Short-Term Photovoltaic Power Forecasting
    Wang, Jinfeng
    Hu, Wenshan
    Xuan, Lingfeng
    He, Feiwu
    Zhong, Chaojie
    Guo, Guowei
    ENERGIES, 2024, 17 (17)
  • [23] Ultra-Short-Term Regional PV Power Forecasting Based on Fluctuation Pattern Recognition with Satellite Images
    Wang, Chao
    Lu, Xiaoxing
    Then, Zhao
    Wang, Fei
    Xu, Xiangchu
    Ren, Hui
    2020 IEEE STUDENT CONFERENCE ON ELECTRIC MACHINES AND SYSTEMS (SCEMS 2020), 2020, : 970 - 975
  • [24] Ultra-Short-Term Wind Power Subsection Forecasting Method Based on Extreme Weather
    Yu, Guang Zheng
    Lu, Liu
    Tang, Bo
    Wang, Si Yuan
    Chung, C. Y.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (06) : 5045 - 5056
  • [25] Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model
    Niu, Dongxiao
    Sun, Lijie
    Yu, Min
    Wang, Keke
    ENERGY, 2022, 254
  • [26] Improving ultra-short-term photovoltaic power forecasting using advanced deep-learning approach
    Su, Zhongyuan
    Gu, Shengyan
    Wang, Jun
    Lund, Peter D.
    MEASUREMENT, 2025, 239
  • [27] A Deep Learning-Based Dual-Scale Hybrid Model for Ultra-Short-Term Photovoltaic Power Forecasting
    Zhang, Yongning
    Ren, Xiaoying
    Zhang, Fei
    Liu, Yulei
    Li, Jierui
    SUSTAINABILITY, 2024, 16 (17)
  • [28] A Novel Ultra-Short-Term PV Power Forecasting Method Based on DBN-Based Takagi-Sugeno Fuzzy Model
    Liu, Ling
    Liu, Fang
    Zheng, Yuling
    ENERGIES, 2021, 14 (20)
  • [29] Applications of Frequency Domain Decomposition and Deep Learning Algorithms in Short-term Load and Photovoltaic Power Forecasting
    Zhang Q.
    Ma Y.
    Li G.
    Ma J.
    Ding J.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39 (08): : 2221 - 2230
  • [30] Ultra-short-term wind power forecasting based on contrastive learning-assisted training
    Wang Y.
    Zhu N.
    Xie H.
    Li J.
    Zhang K.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (03): : 89 - 97