Local versus Global Properties of Metric Spaces Extended abstract

被引:6
|
作者
Arora, Sanjeev [1 ]
Lovasz, Laszlo [2 ,3 ]
Newman, Ilan [4 ]
Rabani, Yuval [5 ]
Rabinovich, Yuri [4 ]
Vempala, Santosh [6 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Microsoft Res, Redmond, WA 98052 USA
[3] Lorand Univ, Dept Comp Sci, Budapest, Hungary
[4] Univ Haifa, Dept Comp Sci, IL-31905 Haifa, Israel
[5] Technion, Dept Comp Sci, IL-32000 Haifa, Israel
[6] MIT, Dept Math, Cambridge, MA 02139 USA
来源
PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS | 2006年
关键词
D O I
10.1145/1109557.1109563
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Motivated by applications in combinatorial optimization, we initiate a study of the extent to which the global properties of a metric space (especially, embeddability in l(1) with low distortion) are determined by the properties of small subspaces. We note connections to similar issues studied already in Ramsey theory, complexity theory (especially PCPs), and property testing. We prove both upper bounds and lower bounds on the distortion of embedding locally constrained metrics into various target spaces.
引用
收藏
页码:41 / +
页数:3
相关论文
共 50 条
  • [1] LOCAL VERSUS GLOBAL PROPERTIES OF METRIC SPACES
    Arora, Sanjeev
    Lovasz, Laszlo
    Newman, Ilan
    Rabani, Yuval
    Rabinovich, Yuri
    Vempala, Santosh
    SIAM JOURNAL ON COMPUTING, 2012, 41 (01) : 250 - 271
  • [2] A local-to-global principle for convexity in metric spaces
    Birtea, Petre
    Ortega, Juan-Pablo
    Ratiu, Tudor S.
    JOURNAL OF LIE THEORY, 2008, 18 (02) : 445 - 469
  • [3] Structural Properties of Hard Metric TSP Inputs (Extended Abstract)
    Momke, Tobias
    SOFSEM 2011: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2011, 6543 : 394 - 405
  • [4] LOCAL PROPERTIES OF QUASIHYPERBOLIC MAPPINGS IN METRIC SPACES
    Huang, Xiaojun
    Liu, Hongjun
    Liu, Jinsong
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2016, 41 (01) : 23 - 40
  • [5] LOCAL AND GLOBAL LIPSCHITZIAN MAPPINGS ON ORDERED METRIC-SPACES
    TURINICI, M
    MATHEMATISCHE NACHRICHTEN, 1981, 101 : 101 - 106
  • [6] Statistical depth in abstract metric spaces
    Gery Geenens
    Alicia Nieto-Reyes
    Giacomo Francisci
    Statistics and Computing, 2023, 33
  • [7] Statistical depth in abstract metric spaces
    Geenens, Gery
    Nieto-Reyes, Alicia
    Francisci, Giacomo
    STATISTICS AND COMPUTING, 2023, 33 (02)
  • [8] APPROXIMATION BY LIPSCHITZ FUNCTIONS IN ABSTRACT SOBOLEV SPACES ON METRIC SPACES
    Mocanu, Marcelina
    MATHEMATICAL REPORTS, 2013, 15 (04): : 459 - 475
  • [9] Slowly oscillating continuity in abstract metric spaces
    Cakalli, Huseyin
    Sonmez, Ayse
    FILOMAT, 2013, 27 (05) : 925 - 930
  • [10] The dynamical Schrodinger problem in abstract metric spaces
    Monsaingeon, Leonard
    Tamanini, Luca
    Vorotnikov, Dmitry
    ADVANCES IN MATHEMATICS, 2023, 426