A 3D porous carbon foam loaded with Fe3O4/graphene oxide for highly effective As(iii) removal

被引:7
|
作者
Ge, Xiao [1 ,2 ]
Xie, Donghua [1 ,2 ]
Zhang, Yunxia [1 ]
机构
[1] Chinese Acad Sci, Inst Solid State Phys, Anhui Key Lab Nanomat & Nanotechnol, Key Lab Mat Phys,Ctr Environm & Energy Nanomat, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金; 中国国家自然科学基金;
关键词
ONE-STEP SYNTHESIS; ARSENIC REMOVAL; HOLLOW MICROSPHERES; GRAPHENE OXIDE; IRON; ADSORPTION; OIL; NANOPARTICLES; COMPOSITES; MANGANESE;
D O I
10.1039/d0nj02830d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 3D porous carbon foam (CF) loaded with Fe3O4/graphene oxide (GO) has been successfully fabricated. As expected, the saturated adsorption capacity of the resulting Fe3O4/GO-CF composite toward As(iii) can reach up to 111 mg g(-1), superior to those of most of the reported Fe-containing adsorbents. Additionally, the obtained Fe3O4/GO-CF exhibits excellent As(iii) removal performance after five absorption-regeneration cycles with more than 70% of removal efficiency. The exceptional arsenic removal performance can be ascribed to its unique 3D porous network structure as well as fully exposed sorption sites originating from Fe(3)O(4)particles. Finally, the macroscopic size and magnetic feature of the Fe3O4/GO-CF monolith are favorable for facile separation after adsorption. Therefore, the hierarchically porous Fe3O4/GO-CF monolith is highly expected to find many potential applications in arsenic-contaminated water remediation.
引用
收藏
页码:12926 / 12931
页数:6
相关论文
共 50 条
  • [21] Hydrothermal synthesis of highly aligned Fe3O4 nanosplates on nickel foam
    Bojabady, Fatemeh
    Kamali-Heidari, Elham
    Sahebian, Samaneh
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 305
  • [22] 3D Fe3O4 nanoparticle/graphene aerogel for NO2 sensing at room temperature
    Liu, Xin
    Li, Jinwei
    Sun, Jianbo
    Zhang, Xitian
    RSC ADVANCES, 2015, 5 (90): : 73699 - 73704
  • [23] Adsorption of Arsenic on Graphene Oxide, Reduced Graphene Oxide, and their Fe3O4 Doped Nanocomposites
    Sengupta, Sudip
    Pari, Arnab
    Biswas, Labani
    Shit, Pradip
    Bhattacharyya, Kallol
    Chattopadhyay, Asoke P.
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2022, 12 (05): : 6196 - 6210
  • [24] Yolk-shell Fe3O4 nanoparticles loaded on persimmon-derived porous carbon for supercapacitor assembly and As (V) removal
    Li, Yingchao
    Xu, Maodan
    Yin, Huanshun
    Shi, Weijie
    Waterhouse, Geoffrey I.N.
    Li, Houshen
    Ai, Shiyun
    Journal of Alloys and Compounds, 2021, 810
  • [25] Yolk-shell Fe3O4 nanoparticles loaded on persimmon-derived porous carbon for supercapacitor assembly and As (V) removal
    Li, Yingchao
    Xu, Maodan
    Yin, Huanshun
    Shi, Weijie
    Waterhouse, Geoffrey I. N.
    Li, Houshen
    Ai, Shiyun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 810
  • [26] Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide
    Zhang, Yi
    Chen, Biao
    Zhang, Liming
    Huang, Jie
    Chen, Fenghua
    Yang, Zupei
    Yao, Jianlin
    Zhang, Zhijun
    NANOSCALE, 2011, 3 (04) : 1446 - 1450
  • [27] Enhanced hydrogen adsorption by Fe3O4–graphene oxide materials
    Seyyed Ershad Moradi
    Applied Physics A, 2015, 119 : 179 - 184
  • [28] Preparation and characterisation of magnetic Fe3O4/graphene oxide nanocomposites
    Cao, L. L.
    Yin, S. M.
    Liang, Y. B.
    Zhu, J. M.
    Fang, C.
    Chen, Z. C.
    MATERIALS RESEARCH INNOVATIONS, 2015, 19 : S364 - S368
  • [29] The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding
    He, Fuan
    Fan, Jintu
    Ma, Dong
    Zhang, Liming
    Leung, Chiwah
    Chan, Helen Laiwa
    CARBON, 2010, 48 (11) : 3139 - 3144
  • [30] Decoration of Fe3O4 magnetic nanoparticles on graphene oxide nanosheets
    Bagherzadeh, M.
    Amrollahi, M. A.
    Makizadeh, S.
    RSC ADVANCES, 2015, 5 (128): : 105499 - 105506