Mirror couplings and Neumann eigenfunctions

被引:4
|
作者
Atar, Rami [1 ]
Burdzy, Krzysztof [2 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Univ Washington, Seattle, WA 98195 USA
关键词
Neumann eigenfunctions; reflected Brownian motion; couplings;
D O I
10.1512/iumj.2008.57.3222
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze a pair of reflected Brownian motions in a planar domain D, for which the increments of both processes form mirror images of each other when the processes are not on the boundary. We show that for D in a class of smooth convex planar domains, the two processes remain ordered forever, according to a certain partial order. This is used to prove that the second eigenvalue is simple for the Laplacian with Neumann boundary conditions for the same class of domains.
引用
收藏
页码:1317 / 1351
页数:35
相关论文
共 50 条
  • [31] On the Completeness of Eigenfunctions of the Neumann—Tricomi Problem for a Degenerate Equation of Mixed Type
    E. I. Moiseev
    M. Mogimi
    Differential Equations, 2005, 41 : 1789 - 1791
  • [32] Bounds for eigenfunctions of the Neumann p-Laplacian on noncompact Riemannian manifolds
    Barletta, Giuseppina
    Cianchi, Andrea
    Maz'ya, Vladimir
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (02) : 319 - 352
  • [33] Estimates on Neumann eigenfunctions at the boundary, and the "Method of Particular Solutions" for computing them
    Hassell, Andrew
    Barnett, Alex
    SPECTRAL GEOMETRY, 2012, 84 : 195 - +
  • [34] Spectral shape optimization for the Neumann traces of the Dirichlet-Laplacian eigenfunctions
    Privat, Yannick
    Trelat, Emmanuel
    Zuazua, Enrique
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (02)
  • [35] Spectral shape optimization for the Neumann traces of the Dirichlet-Laplacian eigenfunctions
    Yannick Privat
    Emmanuel Trélat
    Enrique Zuazua
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [37] Mirror and synchronous couplings of geometric Brownian motions
    Jacka, Saul D.
    Mijatovic, Aleksandar
    Siraj, Dejan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (02) : 1055 - 1069
  • [38] Asymptotic normalization of mirror states and the effect of couplings
    Titus, L. J.
    Capel, P.
    Nunes, F. M.
    PHYSICAL REVIEW C, 2011, 84 (03):
  • [39] Localization and geometrization in plasmon resonances and geometric structures of Neumann-Poincare eigenfunctions
    Blasten, Emilia
    Li Hongjie
    Liu Hongyu
    Wang Yuliang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2020, 54 (03): : 957 - 976
  • [40] On an Exact Convergence of Quasi-Periodic Interpolations for the Polyharmonic-Neumann Eigenfunctions
    Poghosyan, Arnak
    Poghosyan, Lusine
    Barkhudaryan, Rafayel
    ALGORITHMS, 2024, 17 (11)