Non-integrability of geodesic flow on certain algebraic surfaces

被引:3
|
作者
Waters, T. J. [1 ]
机构
[1] Univ Portsmouth, Dept Math, Portsmouth PO13HF, Hants, England
关键词
D O I
10.1016/j.physleta.2012.03.016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter addresses an open problem recently posed by V. Kozlov: a rigorous proof of the non-integrability of the geodesic flow on the cubic surface xyz = 1. We prove this is the case using the Morales-Ramis theorem and Kovacic algorithm. We also consider some consequences and extensions of this result. (c) 2012 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:1442 / 1445
页数:4
相关论文
共 50 条
  • [31] On the non-integrability of Roy's system
    Hone, ANW
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1998, 111 (02): : 205 - 209
  • [32] NON-INTEGRABILITY OF A SYSTEM WITH THE DYSON POTENTIAL
    Georgiev, Georgi
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2018, 71 (09): : 1178 - 1185
  • [33] Integrability and non-integrability of periodic non-autonomous Lyness recurrences
    Cima, Anna
    Gasull, Armengol
    Manosa, Victor
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (04): : 518 - 538
  • [34] Hyperbolicity and analytical non-integrability II
    Cresson, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (03): : 229 - 232
  • [35] Non-integrability of a class of Hamiltonian systems
    Li, Wenlei
    Shi, Shaoyun
    Liu, Bing
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (11)
  • [36] THE NON-INTEGRABILITY OF THE PERTURBED LAGRANGE PROBLEM
    SALNIKOVA, TV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1984, (04): : 62 - 66
  • [37] Non-integrability and chaos with unquenched flavor
    Dimitrios Giataganas
    Konstantinos Zoubos
    Journal of High Energy Physics, 2017
  • [38] ON DARBOUX NON-INTEGRABILITY OF HIETARINTA EQUATION
    Startsev, S. Ya
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 160 - 169
  • [39] Non-integrability of flail triple pendulum
    Przybylska, Maria
    Szuminski, Wojciech
    CHAOS SOLITONS & FRACTALS, 2013, 53 : 60 - 74
  • [40] Non-integrability in non-relativistic theories
    Giataganas, Dimitrios
    Sfetsos, Konstadinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (06):